Structural, FT-IR, XRD and Raman scattering of new rare-earth-titanate pyrochlore-type oxides LnEuTi2O7 (Ln = Gd, Dy)

[1]  Xin Wang,et al.  Synthesis and characterization of ultrafine Ln2Ti2O7 (Ln = Sm, Gd, Dy, Er) pyrochlore oxides by stearic acid method , 2010 .

[2]  Weifeng Zhang,et al.  Influence of annealing temperature on luminescent properties of Eu3+/V5+ co-doped nanocrystalline Gd2Ti2O7 powders , 2009 .

[3]  J. Gavarri,et al.  Determination of RE2Ce2O7 pyrochlore phases from monazite―allanite ores , 2009 .

[4]  M. Saif Luminescence based on energy transfer in silica doped with lanthanide titania (Gd2Ti2O7:Ln3+) [Ln3+ = Eu3+ or Dy3+] , 2009 .

[5]  Annick Rubbens,et al.  Raman scattering and X-ray diffraction on YBiTi2O7prepared at low temperature , 2008 .

[6]  P. Strobel,et al.  Synthesis and structure of new pyrochlore-type oxides Ln2ScNbO7 (Ln = Pr, Nd, Eu, Gd, Dy) , 2008, 0812.2758.

[7]  M. Lü,et al.  Systematic research on RE2Zr2O7 (RE = La, Nd, Eu and Y) nanocrystals : Preparation, structure and photoluminescence characterization , 2008 .

[8]  M. Ma̧czka,et al.  Structural manipulation of pyrochlores: Thermal evolution of metastable Gd2(Ti1−yZry)2O7 powders prepared by mechanical milling , 2006 .

[9]  G. Jose,et al.  Structural and optical characterization of Eu3+/CdSe nanocrystal containing silica glass , 2006 .

[10]  N. C. Thuan,et al.  Observation of the phase formation in TiO2 nano thin film by Raman scattering , 2005 .

[11]  S. Saxena,et al.  Structural changes and pressure-induced amorphization in rare earth titanates Re2Ti2O7 (RE: Gd, Sm) with pyrochlore structure , 2005 .

[12]  D. Tanner,et al.  Infrared study of the phonon modes in bismuth pyrochlores , 2005 .

[13]  D. Gregory,et al.  Site Preference of La in Bi3.75La0.25Ti3O12 Using Neutron Powder Diffraction and Raman Scattering , 2005 .

[14]  Jerzy Hanuza,et al.  Synthesis of disordered pyrochlores, A2Ti2O7 (A = Y, Gd and Dy), by mechanical milling of constituent oxides , 2005 .

[15]  Xin Wang,et al.  Rapid synthesis of ultrafine K2Ln2Ti3O10 (Ln=La, Nd, Sm, Gd, Dy) series and its photoactivity , 2005 .

[16]  Robin W. Grimes,et al.  Disorder in Pyrochlore Oxides , 2004 .

[17]  Yun Liu,et al.  The pyrochlore to ‘defect fluorite’ transition in the Y2(ZryTi1−y)2O7 system and its underlying crystal chemistry , 2004 .

[18]  P. P. Rao,et al.  New pyrochlore-type oxides in Ca–R–Ti–Nb–O system (R=Y, Sm or Gd)—structure, FT-IR spectra and dielectric properties , 2004 .

[19]  T. Kamiyama,et al.  Static bismuth disorder in Bi2−x(CrTa)O7−y , 2004 .

[20]  M. Mori,et al.  Compatibility of GdxTi2O7 pyrochlores (1.72≤x≤2.0) as electrolytes in high-temperature solid oxide fuel cells , 2003 .

[21]  X. Yao,et al.  Evolution of Structure and Dielectric Properties on Bismuth-Based Pyrochlore with TiO2 Incorporation , 2002 .

[22]  H. Du,et al.  Structure, IR spectra and dielectric properties of Bi2O3–ZnO–SnO2–Nb2O5 quarternary pyrochlore , 2002 .

[23]  Y. Chiang,et al.  Pressure-Induced Pyrochlore-Perovskite Phase Transformation in PLZST Ceramics , 2001 .

[24]  R. Cava Dielectric materials for applications in microwave communications , 2001 .

[25]  Kevin W. Eberman,et al.  Order-disorder phenomena in A2B2O7 pyrochlore oxides , 2000 .

[26]  B. Frit,et al.  Nouveaux matériaux ABi2B5O16 (A = Na, Ag, K, Rb, Tl et B = Nb, Ta) de type pyrochlore déficitaire , 2000 .

[27]  W. J. Weber,et al.  Effects of Cation Disorder on Oxygen Vacancy Migration in Gd2Ti2O7 , 1999 .

[28]  C. Catlow,et al.  Defects and diffusion in pyrochlore structured oxides , 1998 .

[29]  C. Catlow,et al.  Molecular dynamics study of the effect of doping and disorder on diffusion in gadolinium zirconate , 1998 .

[30]  Y. Xuan,et al.  Synthesis of a new series of compounds RE2Co2/3Nb4/3O7 and stability field diagram of RE2B2/3′B4/3″O7 pyrochlore compounds , 1998 .

[31]  B. Kennedy,et al.  Surface Segregation and Oxygen Vacancy Ordering in Defect Pyrochlores , 1997 .

[32]  A. Mergen,et al.  Crystal chemistry, thermal expansion and dielectric properties of (Bi1.5Zn0.5)(Sb1.5Zn0.5)O7 pyrochlore , 1997 .

[33]  Harry L. Tuller,et al.  A novel titanate-based oxygen ion conductor: Gd2Ti2O7 , 1995 .

[34]  G. Busca,et al.  FT Raman and FTIR studies of titanias and metatitanate powders , 1994 .

[35]  C. Swamy,et al.  Surface characterization and catalytic activity of Ln2Ti2O7 (Ln=Y, Sm, Gd and Tb) , 1991, Journal of Materials Science.

[36]  S. Stefanovich,et al.  EU2TI2O7 PHASE PRODUCED AT HIGH PRESSURES AND ITS FERROELECTRIC PROPERTIES , 1991 .

[37]  M. Subramanian,et al.  Novel defect pyrochlores ABi2B5O16 (A = Cs, Rb; B = Ta, Nb) , 1988 .

[38]  J. Alonso,et al.  Preparation and x-ray powder diffraction study of the pyrochlores CdLn(TiSb)O7 (Ln = Nd, Gd, Yb) and Na0.5Ln1.5(TiSb)O7 (Ln = Nd, Sm, Gd, Dy, Yb) , 1987 .

[39]  G. V. Subba Rao,et al.  Oxide pyrochlores — A review , 1983 .

[40]  M. Dion,et al.  Structure cristalline du pyrochlore, K0,51SbIII0,67SbV2O6,26 , 1978 .

[41]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[42]  H. Rietveld A profile refinement method for nuclear and magnetic structures , 1969 .

[43]  H. Jaffe,et al.  Ferroelectricity in Oxides of Face-Centered Cubic Structure , 1953 .