Analysis of Transconductance $(g_{m})$ in Schottky-Barrier MOSFETs

This paper experimentally investigates the unique behavior of transconductance (gm) in the Schottky-barrier metal-oxide-semiconductor field-effect transistors (SB-MOSFETs) with various silicide materials. When the Schottky-barrier height (SBH) or a scaling parameter is not properly optimized, a peculiar shape of gm is observed. Thus, gm can be used as a novel metric that exhibits the transition of the carrier injection mechanisms from a thermionic emission (TE) to thermally assisted tunneling (TU) in the SB-MOSFETs. When the local maximum point of gm is observed, it can be expected that an incomplete transition occurs between TE and TU in SB-MOSFETs. When a dopant-segregation (DS) technique is implemented in the SB-MOSFETs, however, the carrier injection efficiency from the source to the channel is significantly improved, although the SBH is not minimized. As a consequence, the peculiar shape of the gm disappears, i.e., a complete transition from TE to TU can be enabled by the DS technique.

[1]  Qing-Tai Zhao,et al.  Tuning of NiSi/Si Schottky barrier heights by sulfur segregation during Ni silicidation , 2005 .

[2]  Xing Zhou,et al.  A Compact Model for Undoped Silicon-Nanowire MOSFETs With Schottky-Barrier Source/Drain , 2009, IEEE Transactions on Electron Devices.

[3]  M. Radosavljevic,et al.  Tunneling versus thermionic emission in one-dimensional semiconductors. , 2004, Physical review letters.

[4]  Jae-Heon Shin,et al.  A 50-nm-gate-length erbium-silicided n-type Schottky barrier metal-oxide-semiconductor field-effect transistor , 2004 .

[5]  O. Faynot,et al.  Arsenic-Segregated Rare-Earth Silicide Junctions: Reduction of Schottky Barrier and Integration in Metallic n-MOSFETs on SOI , 2009, IEEE Electron Device Letters.

[6]  Min Zhang,et al.  On the performance of single-gated ultrathin-body SOI Schottky-barrier MOSFETs , 2006, IEEE Transactions on Electron Devices.

[7]  P. Dobson Physics of Semiconductor Devices (2nd edn) , 1982 .

[8]  F. Danneville,et al.  Optimization of RF Performance of Metallic Source/Drain SOI MOSFETs Using Dopant Segregation at the Schottky Interface , 2009, IEEE Electron Device Letters.

[9]  J. Knoch,et al.  Effective Schottky barrier lowering in silicon-on-insulator Schottky-barrier metal-oxide-semiconductor field-effect transistors using dopant segregation , 2005 .

[10]  J. Koga,et al.  Solution for high-performance Schottky-source/drain MOSFETs: Schottky barrier height engineering with dopant segregation technique , 2004, Digest of Technical Papers. 2004 Symposium on VLSI Technology, 2004..

[11]  R.V.H. Booth,et al.  Modeling of transconductance degradation and extraction of threshold voltage in thin oxide MOSFET's , 1987 .

[12]  C. Hu,et al.  Complementary silicide source/drain thin-body MOSFETs for the 20 nm gate length regime , 2000, International Electron Devices Meeting 2000. Technical Digest. IEDM (Cat. No.00CH37138).

[13]  Shi-Li Zhang,et al.  SB-MOSFETs in UTB-SOI Featuring PtSi Source/Drain With Dopant Segregation , 2008, IEEE Electron Device Letters.

[14]  D.S.H. Chan,et al.  Schottky-barrier S/D MOSFETs with high-k gate dielectrics and metal-gate electrode , 2004, IEEE Electron Device Letters.

[15]  Subthreshold and scaling of PtSi Schottky barrier MOSFETs , 2000 .

[16]  A. Chin,et al.  N-type Schottky barrier source/drain MOSFET using ytterbium silicide , 2004, IEEE Electron Device Letters.

[17]  J. Knoch,et al.  Impact of the channel thickness on the performance of Schottky barrier metal–oxide–semiconductor field-effect transistors , 2002 .

[18]  E. Dubois,et al.  Schottky-barrier source/drain MOSFETs on ultrathin SOI body with a tungsten metallic midgap gate , 2004, IEEE Electron Device Letters.

[19]  H. Grubin The physics of semiconductor devices , 1979, IEEE Journal of Quantum Electronics.

[20]  J. Snyder,et al.  SUB-40 NM PTSI SCHOTTKY SOURCE/DRAIN METAL-OXIDE-SEMICONDUCTOR FIELD-EFFECT TRANSISTORS , 1999 .