Target set selection with maximum activation time

A target set selection model is a graph $G$ with a threshold function $\tau:V\to \mathbb{N}$ upper-bounded by the vertex degree. For a given model, a set $S_0\subseteq V(G)$ is a target set if $V(G)$ can be partitioned into non-empty subsets $S_0,S_1,\dotsc,S_t$ such that, for $i \in \{1, \ldots, t\}$, $S_i$ contains exactly every vertex $v$ having at least $\tau(v)$ neighbors in $S_0\cup\dots\cup S_{i-1}$. We say that $t$ is the activation time $t_{\tau}(S_0)$ of the target set $S_0$. The problem of, given such a model, finding a target set of minimum size has been extensively studied in the literature. In this article, we investigate its variant, which we call TSS-time, in which the goal is to find a target set $S_0$ that maximizes $t_{\tau}(S_0)$. That is, given a graph $G$, a threshold function $\tau$ in $G$, and an integer $k$, the objective of the TSS-time problem is to decide whether $G$ contains a target set $S_0$ such that $t_{\tau}(S_0)\geq k$. Let $\tau^* = \max_{v \in V(G)} \tau(v)$. Our main result is the following dichotomy about the complexity of TSS-time when $G$ belongs to a minor-closed graph class ${\cal C}$: if ${\cal C}$ has bounded local treewidth, the problem is FPT parameterized by $k$ and $\tau^{\star}$; otherwise, it is NP-complete even for fixed $k=4$ and $\tau^{\star}=2$. We also prove that, with $\tau^*=2$, the problem is NP-hard in bipartite graphs for fixed $k=5$, and from previous results we observe that TSS-time is NP-hard in planar graphs and W[1]-hard parameterized by treewidth. Finally, we present a linear-time algorithm to find a target set $S_0$ in a given tree maximizing $t_{\tau}(S_0)$.

[1]  Thiago Braga Marcilon,et al.  The Maximum Time of 2-Neighbour Bootstrap Percolation: Complexity Results , 2014, WG.

[2]  Robert Morris Minimal Percolating Sets in Bootstrap Percolation , 2009, Electron. J. Comb..

[3]  'Target Set Selection' on Graphs of Bounded Vertex Cover Number , 2018, 1812.01482.

[4]  Dieter Rautenbach,et al.  Geodetic convexity parameters for (q, q-4)-graphs , 2017, Discret. Appl. Math..

[5]  Rolf Niedermeier,et al.  Constant Thresholds Can Make Target Set Selection Tractable , 2012, Theory of Computing Systems.

[6]  Mitre Costa Dourado,et al.  The maximum time of 2-neighbour bootstrap percolation: Algorithmic aspects , 2015, Eur. J. Comb..

[7]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[8]  Pierre Duchet,et al.  Convex sets in graphs, II. Minimal path convexity , 1987, J. Comb. Theory B.

[9]  Michal Przykucki Maximal Percolation Time in Hypercubes Under 2-Bootstrap Percolation , 2012, Electron. J. Comb..

[10]  P. Leath,et al.  Bootstrap percolation on a Bethe lattice , 1979 .

[11]  M. Farber,et al.  Convexity in graphs and hypergraphs , 1986 .

[12]  Michal Przykucki,et al.  Maximum Percolation Time in Two-Dimensional Bootstrap Percolation , 2015, SIAM J. Discret. Math..

[13]  Mitre Costa Dourado,et al.  The maximum infection time in the geodesic and monophonic convexities , 2016, Theor. Comput. Sci..

[14]  Eric Riedl,et al.  Largest Minimal Percolating Sets in Hypercubes under 2-Bootstrap Percolation , 2010, Electron. J. Comb..

[15]  Hossein Soltani,et al.  A polyhedral study of dynamic monopolies , 2019, Ann. Oper. Res..

[16]  H. Amini Bootstrap Percolation in Living Neural Networks , 2009, 0910.0627.

[17]  Bruno Courcelle,et al.  The Monadic Second-order Logic of Graphs VI: On Several Representations of Graphs by Relational Structures , 1995, Discret. Appl. Math..

[18]  Jon Kleinberg,et al.  Maximizing the spread of influence through a social network , 2003, KDD '03.

[19]  Van de M. L. J. Vel Theory of convex structures , 1993 .

[20]  Fred S. Roberts,et al.  Irreversible k-threshold processes: Graph-theoretical threshold models of the spread of disease and of opinion , 2009, Discret. Appl. Math..

[21]  H. Duminil-Copin,et al.  The sharp threshold for bootstrap percolation in all dimensions , 2010, 1010.3326.

[22]  Éva Tardos,et al.  Maximizing the Spread of Influence through a Social Network , 2015, Theory Comput..

[23]  David Eppstein Diameter and Treewidth in Minor-Closed Graph Families , 2000, Algorithmica.

[24]  Manouchehr Zaker On dynamic monopolies of graphs with general thresholds , 2012, Discret. Math..

[25]  Cristina Bazgan,et al.  Parameterized Inapproximability of Target Set Selection and Generalizations , 2014, Comput..

[26]  Asahi Takaoka,et al.  A Note on Irreversible 2-Conversion Sets in Subcubic Graphs , 2015, IEICE Trans. Inf. Syst..

[27]  Ching-Lueh Chang,et al.  Bounding the sizes of dynamic monopolies and convergent sets for threshold-based cascades , 2013, Theor. Comput. Sci..

[28]  Pavel Dvorák,et al.  Target Set Selection in Dense Graph Classes , 2018, ISAAC.

[29]  Michael R. Fellows,et al.  Fundamentals of Parameterized Complexity , 2013 .

[30]  Béla Bollobás,et al.  Bootstrap percolation on the hypercube , 2006 .

[31]  Dieter Rautenbach,et al.  On the hardness of finding the geodetic number of a subcubic graph , 2018, Inf. Process. Lett..

[32]  Gennaro Cordasco,et al.  Spread of influence in weighted networks under time and budget constraints , 2015, Theor. Comput. Sci..

[33]  Jayme Luiz Szwarcfiter,et al.  Irreversible conversion of graphs , 2011, Theor. Comput. Sci..

[34]  Eyal Ackerman,et al.  Combinatorial model and bounds for target set selection , 2010, Theor. Comput. Sci..

[35]  B. Bollob'as,et al.  Bootstrap percolation in three dimensions , 2008, 0806.4485.

[36]  Jan Kyncl,et al.  Irreversible 2-conversion set in graphs of bounded degree , 2017, Discret. Math. Theor. Comput. Sci..

[37]  Gennaro Cordasco,et al.  Discovering Small Target Sets in Social Networks: A Fast and Effective Algorithm , 2016, Algorithmica.

[38]  Bruno Courcelle,et al.  The Monadic Second-Order Logic of Graphs. I. Recognizable Sets of Finite Graphs , 1990, Inf. Comput..

[39]  A. Holroyd Sharp metastability threshold for two-dimensional bootstrap percolation , 2002, math/0206132.

[40]  Ning Chen,et al.  On the approximability of influence in social networks , 2008, SODA '08.

[41]  Mitre Costa Dourado,et al.  Inapproximability results related to monophonic convexity , 2015, Discret. Appl. Math..

[42]  Manouchehr Zaker,et al.  Dynamic monopolies in directed graphs: The spread of unilateral influence in social networks , 2012, Discret. Appl. Math..

[43]  Béla Bollobás,et al.  Bootstrap Percolation in High Dimensions , 2009, Combinatorics, Probability and Computing.

[44]  Hong-Gwa Yeh,et al.  Some results on the target set selection problem , 2011, Journal of Combinatorial Optimization.

[45]  Dieter Rautenbach,et al.  On some tractable and hard instances for partial incentives and target set selection , 2018, Discret. Optim..

[46]  Dieter Rautenbach,et al.  Dynamic monopolies for interval graphs with bounded thresholds , 2019, Discret. Appl. Math..

[47]  Martin Grohe Local Tree-Width, Excluded Minors, and Approximation Algorithms , 2003, Comb..

[48]  Michal Przykucki,et al.  On Slowly Percolating Sets of Minimal Size in Bootstrap Percolation , 2013, Electron. J. Comb..

[49]  Frank Harary,et al.  Convexity in graphs , 1981 .

[50]  Martin Milanič,et al.  Latency-bounded target set selection in social networks , 2013, Theor. Comput. Sci..

[51]  Ilan Newman,et al.  Treewidth governs the complexity of target set selection , 2011, Discret. Optim..

[52]  Tim A. Hartmann Target Set Selection Parameterized by Clique-Width and Maximum Threshold , 2018, SOFSEM.

[53]  Mihalis Yannakakis,et al.  The Complexity of Multiterminal Cuts , 1994, SIAM J. Comput..

[54]  Thiago Braga Marcilon,et al.  The P3 infection time is W[1]-hard parameterized by the treewidth , 2018, Inf. Process. Lett..

[55]  Thiago Braga Marcilon,et al.  The maximum infection time of the P3 convexity in graphs with bounded maximum degree , 2018, Discret. Appl. Math..

[56]  Jayme Luiz Szwarcfiter,et al.  On the Carathéodory Number for the Convexity of Paths of Order Three , 2012, SIAM J. Discret. Math..

[57]  Rolf Niedermeier,et al.  On tractable cases of Target Set Selection , 2010, Social Network Analysis and Mining.

[58]  E. C. Milner,et al.  Some remarks on simple tournaments , 1972 .