Entropy production rate in a flux-driven self-organizing system.
暂无分享,去创建一个
Entropy production rate (EPR) is often effective to describe how a structure is self-organized in a nonequilibrium thermodynamic system. The "minimum EPR principle" is widely applicable to characterizing self-organized structures, but is sometimes disproved by observations of "maximum EPR states." Here we delineate a dual relation between the minimum and maximum principles; the mathematical representation of the duality is given by a Legendre transformation. For explicit formulation, we consider heat transport in the boundary layer of fusion plasma [Z. Yoshida and S. M. Mahajan, Phys. Plasmas 15, 032307 (2008)]. The mechanism of bifurcation and hysteresis (which are the determining characteristics of the so-called H-mode, a self-organized state of reduced thermal conduction) is explained by multiple tangent lines to a pleated graph of an appropriate thermodynamic potential. In the nonlinear regime, we have to generalize Onsager's dissipation function. The generalized function is no longer equivalent to EPR; then EPR ceases to be the determinant of the operating point, and may take either minimum or maximum values depending on how the system is driven.