Fuzzy Attribute Implications: Computing Non-redundant Bases Using Maximal Independent Sets

This note describes a method for computation of non-redundant bases of attribute implications from data tables with fuzzy attributes. Attribute implications are formulas describing particular dependencies of attributes in data. A non-redundant basis is a minimal set of attribute implications such that each attribute implication which is true in a given data (semantically) follows from the basis. Our bases are uniquely given by so-called systems of pseudo-intents. We reduce the problem of computing systems of pseudo-intents to the problem of computing maximal independent sets in certain graphs. We outline theoretical foundations, the algorithm, and present demonstrating examples.

[1]  Radim B̌elohĺavek,et al.  Implications from data with fuzzy attributes , 2004 .

[2]  Siegfried Gottwald,et al.  Fuzzy Sets and Fuzzy Logic , 1993 .

[3]  Dimitar P. Filev,et al.  Fuzzy SETS AND FUZZY LOGIC , 1996 .

[4]  R. Belohlávek,et al.  FUZZY ATTRIBUTE LOGIC : ATTRIBUTE IMPLICATIONS , THEIR VALIDITY , ENTAILMENT , AND NON-REDUNDANT BASIS ∗ , 2005 .

[5]  Radim Belohlávek,et al.  Concept lattices and order in fuzzy logic , 2004, Ann. Pure Appl. Log..

[6]  Radim Bělohlávek,et al.  Fuzzy Relational Systems: Foundations and Principles , 2002 .

[7]  Vilém Vychodil,et al.  Reducing attribute implications from data tables with fuzzy attributes to tables with binary attributes , 2005 .

[8]  Radim Belohlávek,et al.  Similarity relations in concept lattices , 2000, J. Log. Comput..

[9]  George J. Klir,et al.  Fuzzy sets and fuzzy logic - theory and applications , 1995 .

[10]  Petr Hájek,et al.  Metamathematics of Fuzzy Logic , 1998, Trends in Logic.

[11]  Satoko Titani,et al.  Globalization of intui tionistic set theory , 1987, Ann. Pure Appl. Log..

[12]  Vilém Vychodil,et al.  Implications from data with fuzzy attributes vs. scaled binary attributes , 2005, The 14th IEEE International Conference on Fuzzy Systems, 2005. FUZZ '05..

[13]  Vincent Duquenne,et al.  Familles minimales d'implications informatives résultant d'un tableau de données binaires , 1986 .

[14]  Petr Hájek,et al.  On very true , 2001, Fuzzy Sets Syst..

[15]  L. Beran,et al.  [Formal concept analysis]. , 1996, Casopis lekaru ceskych.

[16]  R. Belohlávek Fuzzy Relational Systems: Foundations and Principles , 2002 .

[17]  Giangiacomo Gerla,et al.  Fuzzy Logic: Mathematical Tools for Approximate Reasoning , 2001 .

[18]  Bernhard Ganter,et al.  Formal Concept Analysis: Mathematical Foundations , 1998 .