Descriptional Complexity of Finite Automata: Concepts and Open Problems

"Automata theory is not over" is the message of this paper. But if one wishes a renaissance of automata theory, then one should prefer to return to the investigation of the fundamental, classical problems of automata theory rather then searching for new applications and defining numerous questionable modifications of basic models. We argue for this opinion here and try co outline a way that could lead to a renaissance of automata theory.

[1]  Silvio Micali,et al.  Two-Way Deterministic Finite Automata are Exponentially More Succinct Than Sweeping Automata , 1981, Inf. Process. Lett..

[2]  John E. Hopcroft,et al.  An n log n algorithm for minimizing states in a finite automaton , 1971 .

[3]  FRANK R. MOORE,et al.  On the Bounds for State-Set Size in the Proofs of Equivalence Between Deterministic, Nondeterministic, and Two-Way Finite Automata , 1971, IEEE Transactions on Computers.

[4]  Jonathan Goldstine,et al.  On the Relation between Ambiguity and Nondeterminism in Finite Automata , 1992, Inf. Comput..

[5]  Juraj Hromkovic,et al.  On the power of Las Vegas II: Two-way finite automata , 1999, Theor. Comput. Sci..

[6]  David A. Huffman,et al.  The synthesis of sequential switching circuits , 1954 .

[7]  Oscar H. Ibarra,et al.  Relating the Type of Ambiguity of Finite Automata to the Succinctness of Their Representation , 1989, SIAM J. Comput..

[8]  Yuri Lifshits A lower bound on the size of [epsiv]-free NFA corresponding to a regular expression , 2003, Inf. Process. Lett..

[9]  Juraj Hromkovic,et al.  On the Power of Las Vegas for One-Way Communication Complexity, OBDDs, and Finite Automata , 2001, Inf. Comput..

[10]  V. Glushkov THE ABSTRACT THEORY OF AUTOMATA , 1961 .

[11]  George H. Mealy,et al.  A method for synthesizing sequential circuits , 1955 .

[12]  Piotr Berman A Note on Sweeping Automata , 1980, ICALP.

[13]  Hing Leung Separating Exponentially Ambiguous Finite Automata from Polynomially Ambiguous Finite Automata , 1998, SIAM J. Comput..

[14]  Hartmut Klauck,et al.  Measures of Nondeterminism in Finite Automata , 2000, ICALP.

[15]  Michael Sipser Lower Bounds on the Size of Sweeping Automata , 1980, J. Comput. Syst. Sci..

[16]  Andrzej Ehrenfeucht,et al.  Complexity Measures for Regular Expressions , 1976, J. Comput. Syst. Sci..

[17]  Thomas Wilke,et al.  Translating Regular Expressions into Small epsilon-Free Nondeterministic Finite Automata , 1997, STACS.

[18]  Anne Brüggemann-Klein Regular Expressions into Finite Automata , 1993, Theor. Comput. Sci..

[19]  Robert McNaughton,et al.  Regular Expressions and State Graphs for Automata , 1960, IRE Trans. Electron. Comput..

[20]  Tao Jiang,et al.  Minimal NFA Problems are Hard , 1991, SIAM J. Comput..

[21]  Jonathan Goldstine,et al.  On Measuring Nondeterminism in Regular Languages , 1990, Inf. Comput..

[22]  Shimon Even,et al.  Ambiguity in Graphs and Expressions , 1971, IEEE Transactions on Computers.

[23]  Edward F. Moore,et al.  Gedanken-Experiments on Sequential Machines , 1956 .

[24]  Dana S. Scott,et al.  Finite Automata and Their Decision Problems , 1959, IBM J. Res. Dev..

[25]  Jeffrey Shallit,et al.  A Lower Bound Technique for the Size of Nondeterministic Finite Automata , 1996, Inf. Process. Lett..

[26]  E. M. Schmidt Succinctness of Descriptions of Context-Free, Regular and Finite Languages , 1977 .

[27]  Hing Leung Tight Lower Bounds on the Size of Sweeping Automata , 2001, J. Comput. Syst. Sci..

[28]  Juraj Hromkovic,et al.  Communication Complexity and Parallel Computing , 1997, Texts in Theoretical Computer Science An EATCS Series.

[29]  Juraj Hromkovic Communication Complexity Hierarchy , 1986, Theor. Comput. Sci..

[30]  Henry N. Adorna 3-Party Message Complexity is Better than 2-Party Ones for Proving Lower Bounds on the Size of Minimal Nondeterministic Finite Automata , 2001, DCFS.

[31]  Harry B. Hunt,et al.  On the Equivalence and Containment Problems for Unambiguous Regular Expressions, Regular Grammars and Finite Automata , 1985, SIAM J. Comput..

[32]  Ken Thompson,et al.  Programming Techniques: Regular expression search algorithm , 1968, Commun. ACM.

[33]  William J. Sakoda,et al.  Nondeterminism and the size of two way finite automata , 1978, STOC.

[34]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[35]  Georg Schnitger,et al.  Las Vegas Versus Determinism for One-way Communication Complexity, Finite Automata, and Polynomial-time Computations , 1997, STACS.