A New Fast-Multipole Accelerated Poisson Solver in Two Dimensions

We present an adaptive fast multipole method for solving the Poisson equation in two dimensions. The algorithm is direct, assumes that the source distribution is discretized using an adaptive quad-tree, and allows for Dirichlet, Neumann, periodic, and free-space conditions to be imposed on the boundary of a square. The amount of work per grid point is comparable to that of classical fast solvers, even for highly nonuniform grids.

[1]  Norman Yarvin,et al.  Generalized Gaussian Quadratures and Singular Value Decompositions of Integral Operators , 1998, SIAM J. Sci. Comput..

[2]  V. Rokhlin Rapid solution of integral equations of classical potential theory , 1985 .

[3]  P. Colella,et al.  A Cartesian Grid Embedded Boundary Method for Poisson's Equation on Irregular Domains , 1998 .

[4]  L. Greengard The Rapid Evaluation of Potential Fields in Particle Systems , 1988 .

[5]  L. Greengard,et al.  A new version of the Fast Multipole Method for the Laplace equation in three dimensions , 1997, Acta Numerica.

[6]  I. Stakgold,et al.  Boundary value problems of mathematical physics , 1987 .

[7]  D. Brandt,et al.  Multi-level adaptive solutions to boundary-value problems math comptr , 1977 .

[8]  C. Canuto Spectral methods in fluid dynamics , 1991 .

[9]  Giovanni Russo,et al.  Fast triangulated vortex methods for the 2D Euler equations , 1994 .

[10]  M. Minion A Projection Method for Locally Refined Grids , 1996 .

[11]  J. CARRIERt,et al.  A FAST ADAPTIVE MULTIPOLE ALGORITHM FOR PARTICLE SIMULATIONS * , 2022 .

[12]  Leslie Greengard,et al.  A fast algorithm for particle simulations , 1987 .

[13]  D. Gottlieb,et al.  Numerical analysis of spectral methods : theory and applications , 1977 .

[14]  L. Greengard,et al.  A Fast Poisson Solver for Complex Geometries , 1995 .

[15]  Zydrunas Gimbutas,et al.  Coulomb Interactions on Planar Structures: Inverting the Square Root of the Laplacian , 2000, SIAM J. Sci. Comput..

[16]  P. Colella,et al.  Local adaptive mesh refinement for shock hydrodynamics , 1989 .

[17]  Paul N. Swarztrauber,et al.  EFFICIENT FORTRAN SUBPROGRAMS FOR THE SOLUTION OF ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS , 1981 .

[18]  Vladimir Rokhlin,et al.  An Improved Fast Multipole Algorithm for Potential Fields , 1998, SIAM J. Sci. Comput..

[19]  Leslie Greengard,et al.  A renormalization method for the evaluation of lattice sums , 1994 .

[20]  L. Greengard,et al.  A Direct Adaptive Poisson Solver of Arbitrary Order Accuracy , 1996 .

[21]  Phillip Colella,et al.  An adaptive projection method for the incompressible Euler equations , 1993 .

[22]  Tony F. Chan,et al.  Domain decomposition and multigrid algorithms for elliptic problems on unstructured meshes , 1994 .

[23]  A. Patera A spectral element method for fluid dynamics: Laminar flow in a channel expansion , 1984 .

[24]  P. Swarztrauber THE METHODS OF CYCLIC REDUCTION, FOURIER ANALYSIS AND THE FACR ALGORITHM FOR THE DISCRETE SOLUTION OF POISSON'S EQUATION ON A RECTANGLE* , 1977 .

[25]  W. Henshaw,et al.  Composite overlapping meshes for the solution of partial differential equations , 1990 .