Barrel Cortex Critical Period Plasticity Is Independent of Changes in NMDA Receptor Subunit Composition

[1]  K. Svoboda,et al.  Rapid Development and Plasticity of Layer 2/3 Maps in Rat Barrel Cortex In Vivo , 2001, Neuron.

[2]  K. Fox,et al.  The Role of Cortical Activity in Experience-Dependent Potentiation and Depression of Sensory Responses in Rat Barrel Cortex , 2001, The Journal of Neuroscience.

[3]  Alison L. Barth,et al.  NMDAR EPSC kinetics do not regulate the critical period for LTP at thalamocortical synapses , 2001, Nature Neuroscience.

[4]  Colin Blakemore,et al.  PLC-β1, activated via mGluRs, mediates activity-dependent differentiation in cerebral cortex , 2001, Nature Neuroscience.

[5]  M. Umemiya,et al.  A Calcium-Dependent Feedback Mechanism Participates in Shaping Single NMDA Miniature EPSCs , 2001, The Journal of Neuroscience.

[6]  M. Ehlers,et al.  Reinsertion or Degradation of AMPA Receptors Determined by Activity-Dependent Endocytic Sorting , 2000, Neuron.

[7]  K. Gottmann,et al.  Synaptic Activity‐Dependent Developmental Regulation of NMDA Receptor Subunit Expression in Cultured Neocortical Neurons , 2000, Journal of neurochemistry.

[8]  M. Constantine‐Paton,et al.  Activity-Dependent Induction of Tonic Calcineurin Activity Mediates a Rapid Developmental Downregulation of NMDA Receptor Currents , 2000, Neuron.

[9]  Susumu Tonegawa,et al.  Cortex-restricted disruption of NMDAR1 impairs neuronal patterns in the barrel cortex , 2000, Nature.

[10]  B. Gordon,et al.  Development of NR1, NR2A and NR2B mRNA in NR1 immunoreactive cells of rat visual cortex , 2000, Brain Research.

[11]  P. Seeburg,et al.  C-Terminal Truncation of NR2A Subunits Impairs Synaptic But Not Extrasynaptic Localization of NMDA Receptors , 2000, The Journal of Neuroscience.

[12]  Stephanie A. White,et al.  Slow NMDA-EPSCs at synapses critical for song development are not required for song learning in zebra finches , 2000, Nature Neuroscience.

[13]  B. Gordon,et al.  Postnatal development of NR1, NR2A and NR2B immunoreactivity in the visual cortex of the rat , 2000, Brain Research.

[14]  M. Fagiolini,et al.  Inhibitory threshold for critical-period activation in primary visual cortex , 2000, Nature.

[15]  M. T. Shipley,et al.  Expression of NR1, NR2A‐D, and NR3 subunits of the NMDA receptor in the cerebral cortex and olfactory bulb of adult rat , 2000, Synapse.

[16]  W Singer,et al.  Genetic and epigenetic regulation of NMDA receptor expression in the rat visual cortex , 1999, The European journal of neuroscience.

[17]  M. Bear,et al.  Bidirectional, experience-dependent regulation of N-methyl-D-aspartate receptor subunit composition in the rat visual cortex during postnatal development. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[18]  E. Shimizu,et al.  Genetic enhancement of learning and memory in mice , 1999, Nature.

[19]  J. Isaac,et al.  Developmental and activity- dependent regulation of kainate receptors at thalamocortical synapses , 1999, Nature.

[20]  B. Connors,et al.  Efficacy of Thalamocortical and Intracortical Synaptic Connections Quanta, Innervation, and Reliability , 1999, Neuron.

[21]  G. Westbrook,et al.  The Incorporation of NMDA Receptors with a Distinct Subunit Composition at Nascent Hippocampal Synapses In Vitro , 1999, The Journal of Neuroscience.

[22]  E. B. Roberts,et al.  Enhanced NR2A subunit expression and decreased NMDA receptor decay time at the onset of ocular dominance plasticity in the ferret. , 1999, Journal of neurophysiology.

[23]  Alcino J. Silva,et al.  Impaired experience-dependent plasticity in barrel cortex of mice lacking the alpha and delta isoforms of CREB. , 1999, Cerebral cortex.

[24]  Mark F. Bear,et al.  Rapid, experience-dependent expression of synaptic NMDA receptors in visual cortex in vivo , 1999, Nature Neuroscience.

[25]  M. Crair Neuronal activity during development: permissive or instructive? , 1999, Current Opinion in Neurobiology.

[26]  F. Ebner,et al.  Experience-Dependent Plasticity of Adult Rat S1 Cortex Requires Local NMDA Receptor Activation , 1998, The Journal of Neuroscience.

[27]  T. Manabe,et al.  Increased Thresholds for Long-Term Potentiation and Contextual Learning in Mice Lacking the NMDA-type Glutamate Receptor ε1 Subunit , 1998, The Journal of Neuroscience.

[28]  E. B. Roberts,et al.  Suppression of NMDA receptor function using antisense DNA block ocular dominance plasticity while preserving visual responses. , 1998, Journal of neurophysiology.

[29]  Daniel E Feldman,et al.  Long-Term Depression at Thalamocortical Synapses in Developing Rat Somatosensory Cortex , 1998, Neuron.

[30]  Scott T. Wong,et al.  Loss of adenylyl cyclase I activity disrupts patterning of mouse somatosensory cortex , 1998, Nature Genetics.

[31]  S. Shenolikar,et al.  Gating of CaMKII by cAMP-regulated protein phosphatase activity during LTP. , 1998, Science.

[32]  S. Vicini,et al.  Functional and pharmacological differences between recombinant N-methyl-D-aspartate receptors. , 1998, Journal of neurophysiology.

[33]  S. Tonegawa,et al.  NMDA Receptor-Dependent Refinement of Somatotopic Maps , 1997, Neuron.

[34]  Carla J. Shatz,et al.  Activity-Dependent Regulation of NMDAR1 Immunoreactivity in the Developing Visual Cortex , 1997, The Journal of Neuroscience.

[35]  A. S. Ramoa,et al.  Retinal activity regulates developmental switches in functional properties and ifenprodil sensitivity of NMDA receptors in the lateral geniculate nucleus. , 1997, Brain research. Developmental brain research.

[36]  H. Monyer,et al.  NR2A Subunit Expression Shortens NMDA Receptor Synaptic Currents in Developing Neocortex , 1997, The Journal of Neuroscience.

[37]  Michael C. Crair,et al.  Silent Synapses during Development of Thalamocortical Inputs , 1997, Neuron.

[38]  MF Bear Progress in understanding NMDA-receptor-dependent synaptic plasticity in the visual cortex , 1996, Journal of Physiology-Paris.

[39]  Y. Yaari,et al.  Synaptic NMDA receptors in developing mouse hippocampal neurones: functional properties and sensitivity to ifenprodil. , 1996, The Journal of physiology.

[40]  C. Shatz,et al.  Synaptic Activity and the Construction of Cortical Circuits , 1996, Science.

[41]  Kristina D. Micheva,et al.  Quantitative aspects of synaptogenesis in the rat barrel field cortex with special reference to GABA circuitry , 1996, The Journal of comparative neurology.

[42]  A. Agmon,et al.  Functional GABAergic Synaptic Connection in Neonatal Mouse Barrel Cortex , 1996, The Journal of Neuroscience.

[43]  D. O'Leary,et al.  Glutamate receptor blockade at cortical synapses disrupts development of thalamocortical and columnar organization in somatosensory cortex. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[44]  E. Welker,et al.  Altered Sensory Processing in the Somatosensory Cortex of the Mouse Mutant Barrelless , 1996, Science.

[45]  Patricia Gaspar,et al.  Lack of Barrels in the Somatosensory Cortex of Monoamine Oxidase A–Deficient Mice: Role of a Serotonin Excess during the Critical Period , 1996, Neuron.

[46]  Masahiko Watanabe,et al.  Impairment of Suckling Response, Trigeminal Neuronal Pattern Formation, and Hippocampal LTD in NMDA Receptor ε2 Subunit Mutant Mice , 1996, Neuron.

[47]  J. Rossier,et al.  Neuronal activity differentially regulates NMDA receptor subunit expression in cerebellar granule cells , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[48]  R. Iyengar,et al.  Postsynaptic CAMP pathway gates early LTP in hippocampal CA1 region , 1995, Neuron.

[49]  S. Vicini,et al.  Characterization of NMDA Receptor Subunit‐Specific Antibodies: Distribution of NR2A and NR2B Receptor Subunits in Rat Brain and Ontogenic Profile in the Cerebellum , 1995, Journal of neurochemistry.

[50]  Michael C. Crair,et al.  A critical period for long-term potentiation at thalamocortical synapses , 1995, Nature.

[51]  K. Williams,et al.  Expression of mRNAs Encoding Subunits of the NMDA Receptor in Developing Rat Brain , 1995, Journal of neurochemistry.

[52]  T. Yagi,et al.  Reduced hippocampal LTP and spatial learning in mice lacking NMDA receptor ε1 subunit , 1995, Nature.

[53]  K. Fox,et al.  Critical period control in sensory cortex , 1994, Current Opinion in Neurobiology.

[54]  K. Fox,et al.  The cortical component of experience-dependent synaptic plasticity in the rat barrel cortex , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[55]  Y. Komatsu,et al.  Age-dependent long-term potentiation of inhibitory synaptic transmission in rat visual cortex , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[56]  R Hen,et al.  Enhanced aggressive behavior in mice lacking 5-HT1B receptor. , 1994, Science.

[57]  A. J. Scheetz,et al.  Modulation of NMDA receptor function: implications for vertebrate neural development , 1994, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[58]  C. McBain,et al.  N-methyl-D-aspartic acid receptor structure and function. , 1994, Physiological reviews.

[59]  R. Dingledine,et al.  Molecular biology of glutamate receptors. Potentiation of N-methyl-D-aspartate receptor splice variants by zinc. , 1994, Renal physiology and biochemistry.

[60]  Y. Jan,et al.  Changing subunit composition of heteromeric NMDA receptors during development of rat cortex , 1994, Nature.

[61]  B. Sakmann,et al.  Developmental and regional expression in the rat brain and functional properties of four NMDA receptors , 1994, Neuron.

[62]  Susumu Tonegawa,et al.  Whisker-related neuronal patterns fail to develop in the trigeminal brainstem nuclei of NMDAR1 knockout mice , 1994, Cell.

[63]  R. Nicoll,et al.  NMDA-receptor-dependent synaptic plasticity: multiple forms and mechanisms , 1993, Trends in Neurosciences.

[64]  K Williams,et al.  Ifenprodil discriminates subtypes of the N-methyl-D-aspartate receptor: selectivity and mechanisms at recombinant heteromeric receptors. , 1993, Molecular pharmacology.

[65]  Bradley L. Schlaggar,et al.  Postsynaptic control of plasticity in developing somatosensory cortex , 1993, Nature.

[66]  K. Sakimura,et al.  Developmental changes in distribution of NMDA receptor channel subunit mRNAs. , 1992, Neuroreport.

[67]  G. Carmignoto,et al.  Activity-dependent decrease in NMDA receptor responses during development of the visual cortex. , 1992, Science.

[68]  N. Daw,et al.  The effect of visual experience on development of NMDA receptor synaptic transmission in kitten visual cortex , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[69]  A. Agmon,et al.  NMDA receptor-mediated currents are prominent in the thalamocortical synaptic response before maturation of inhibition. , 1992, Journal of neurophysiology.

[70]  Shaul Hestrin,et al.  Developmental regulation of NMDA receptor-mediated synaptic currents at a central synapse , 1992, Nature.

[71]  K. Fox,et al.  A critical period for experience-dependent synaptic plasticity in rat barrel cortex , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[72]  B. Connors,et al.  Thalamocortical responses of mouse somatosensory (barrel) cortexin vitro , 1991, Neuroscience.

[73]  W Singer,et al.  Disruption of experience-dependent synaptic modifications in striate cortex by infusion of an NMDA receptor antagonist , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[74]  N. Daw,et al.  The location and function of NMDA receptors in cat and kitten visual cortex , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[75]  T. Woolsey,et al.  Templates for locating the whisker area in fresh flattened mouse and rat cortex , 1987, Journal of Neuroscience Methods.

[76]  W. Singer,et al.  Blockade of "NMDA" receptors disrupts experience-dependent plasticity of kitten striate cortex. , 1987, Science.

[77]  B. Gustafsson,et al.  Long-term potentiation in the hippocampus using depolarizing current pulses as the conditioning stimulus to single volley synaptic potentials , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[78]  M. Wong-Riley,et al.  Histochemical changes in cytochrome oxidase of cortical barrels after vibrissal removal in neonatal and adult mice. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[79]  D. Hubel,et al.  Ferrier lecture - Functional architecture of macaque monkey visual cortex , 1977, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[80]  D. Hubel,et al.  SINGLE-CELL RESPONSES IN STRIATE CORTEX OF KITTENS DEPRIVED OF VISION IN ONE EYE. , 1963, Journal of neurophysiology.

[81]  V. Mountcastle Modality and topographic properties of single neurons of cat's somatic sensory cortex. , 1957, Journal of neurophysiology.

[82]  M. Bear,et al.  Visual Experience and Deprivation Bidirectionally Modify the Composition and Function of NMDA Receptors in Visual Cortex , 2001, Neuron.

[83]  G. Bi,et al.  Synaptic modification by correlated activity: Hebb's postulate revisited. , 2001, Annual review of neuroscience.

[84]  G. Westbrook,et al.  Fast NMDA Receptor–Mediated Synaptic Currents in Neurons From Mice Lacking the ε2 (NR2B) Subunit , 2000 .

[85]  E. Juengst,et al.  Genetic enhancement. , 1999, Medical ethics.

[86]  W. Singer Development and plasticity of cortical processing architectures. , 1995, Science.

[87]  James R. Coleman,et al.  Development of sensory systems in mammals , 1990 .