Learning Context-Sensitive Domain Ontologies from Folksonomies: A Cognitively Motivated Method

Ontology is the backbone of the Semantic Web, helping users search for relevant resources from the Web of linked data. The existing context-free mapping approach between tags and concepts fails to address the problems of social synonymy and social polysemy when ontologies are induced from folksonomies. The novel contributions of this paper are threefold. First, grounded in the cognitively motivated category utility measure, a novel basic-level concept mining algorithm is developed to construct semantically rich concept vectors to alleviate the problem of social synonymy. Second, contextual aspects of ontology learning are exploited via probabilistic topic modeling to address the problem of social polysemy. Third, a novel context-sensitive domain ontology learning algorithm that combines link- and content-based semantic analysis is developed to identify both taxonomic and associative relations among concepts. To the best of our knowledge, this is the first successful research that exploits a cognitively mo...

[1]  Simone Paolo Ponzetto,et al.  Deriving a Large-Scale Taxonomy from Wikipedia , 2007, AAAI.

[2]  Mark A. Gluck,et al.  Information, Uncertainty and the Utility of Categories , 1985 .

[3]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..

[4]  Steffen Staab,et al.  Ontology Learning , 2004, Encyclopedia of Machine Learning and Data Mining.

[5]  Thomas L. Griffiths,et al.  Learning author-topic models from text corpora , 2010, TOIS.

[6]  George A. Vouros,et al.  Gold Standard Evaluation of Ontology Learning Methods through Ontology Transformation and Alignment , 2011, IEEE Transactions on Knowledge and Data Engineering.

[7]  J. Leon Zhao,et al.  Automatic discovery of similarity relationships through Web mining , 2003, Decis. Support Syst..

[8]  Weizhe Zhang,et al.  Ontology emergence from folksonomies , 2010, CIKM.

[9]  Lei Zhang,et al.  Modeling Ontology of Folksonomy with Latent Semantics of Tags , 2010, 2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology.

[10]  Raymond Y. K. Lau,et al.  Toward a Fuzzy Domain Ontology Extraction Method for Adaptive e-Learning , 2009, IEEE Transactions on Knowledge and Data Engineering.

[11]  W. Bruce Croft,et al.  Deriving concept hierarchies from text , 1999, SIGIR '99.

[12]  Steffen Staab,et al.  Learning Concept Hierarchies from Text Corpora using Formal Concept Analysis , 2005, J. Artif. Intell. Res..

[13]  Qiong Luo,et al.  Towards Ontology Learning from Folksonomies , 2009, IJCAI.

[14]  Siu Cheung Hui,et al.  Automatic fuzzy ontology generation for semantic Web , 2006, IEEE Transactions on Knowledge and Data Engineering.

[15]  Sadok Ben Yahia,et al.  Bridging Folksonomies and Domain Ontologies: Getting Out Non-taxonomic Relations , 2010, 2010 IEEE International Conference on Data Mining Workshops.

[16]  Hector Garcia-Molina,et al.  Collaborative Creation of Communal Hierarchical Taxonomies in Social Tagging Systems , 2006 .

[17]  Amal Zouaq,et al.  Evaluating the Generation of Domain Ontologies in the Knowledge Puzzle Project , 2009, IEEE Transactions on Knowledge and Data Engineering.

[18]  Michael McGill,et al.  Introduction to Modern Information Retrieval , 1983 .

[19]  Dominik Benz,et al.  Evaluation of Folksonomy Induction Algorithms , 2012, TIST.

[20]  P. Schmitz,et al.  Inducing Ontology from Flickr Tags , 2006 .

[21]  Thomas R. Gruber,et al.  A translation approach to portable ontology specifications , 1993, Knowl. Acquis..

[22]  Wayne D. Gray,et al.  Basic objects in natural categories , 1976, Cognitive Psychology.

[23]  Gerard Salton,et al.  Recent trends in automatic information retrieval , 1986, SIGIR '86.

[24]  Peter Mika Ontologies Are Us: A Unified Model of Social Networks and Semantics , 2005, International Semantic Web Conference.

[25]  Tim Berners-Lee,et al.  Linked Data - The Story So Far , 2009, Int. J. Semantic Web Inf. Syst..

[26]  Daniel Jupiter,et al.  TreeHugger: A New Test for Enrichment of Gene Ontology Terms , 2010, INFORMS J. Comput..

[27]  Wei Jiang,et al.  A Cluster-Based Context-Tree Model for Multivariate Data Streams with Applications to Anomaly Detection , 2011, INFORMS J. Comput..

[28]  J. Tanaka,et al.  Object categories and expertise: Is the basic level in the eye of the beholder? , 1991, Cognitive Psychology.

[29]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[30]  Stanley Wasserman,et al.  Social Network Analysis: Methods and Applications , 1994, Structural analysis in the social sciences.

[31]  M. Chun,et al.  Contextual Cueing: Implicit Learning and Memory of Visual Context Guides Spatial Attention , 1998, Cognitive Psychology.

[32]  Michele Missikoff,et al.  An Ontology-based Platform for Semantic Interoperability , 2004, Handbook on Ontologies.

[33]  Marti A. Hearst Automatic Acquisition of Hyponyms from Large Text Corpora , 1992, COLING.

[34]  Mohammed Bennamoun,et al.  Ontology learning from text: A look back and into the future , 2012, CSUR.

[35]  Rongrong Ji,et al.  SentiBank: large-scale ontology and classifiers for detecting sentiment and emotions in visual content , 2013, ACM Multimedia.

[36]  Marek Hatala,et al.  An Approach to Folksonomy-Based Ontology Maintenance for Learning Environments , 2011, IEEE Transactions on Learning Technologies.

[37]  Yuefeng Li,et al.  A Personalized Ontology Model for Web Information Gathering , 2011, IEEE Transactions on Knowledge and Data Engineering.

[38]  Andrzej Bargiela,et al.  Probabilistic Topic Models for Learning Terminological Ontologies , 2010, IEEE Transactions on Knowledge and Data Engineering.

[39]  Muhammad Younus Javed,et al.  A hierarchical k-means clustering based fingerprint quality classification , 2012, Neurocomputing.

[40]  Raymond Y. K. Lau,et al.  Toward a semantic granularity model for domain-specific information retrieval , 2011, TOIS.

[41]  Michele Dassisti,et al.  ONTO-PDM: Product-driven ONTOlogy for Product Data Management interoperability within manufacturing process environment , 2012, Adv. Eng. Informatics.

[42]  Yong Yu,et al.  An Unsupervised Model for Exploring Hierarchical Semantics from Social Annotations , 2007, ISWC/ASWC.