The Rise of Oxygen over the Past 205 Million Years and the Evolution of Large Placental Mammals

On the basis of a carbon isotopic record of both marine carbonates and organic matter from the Triassic-Jurassic boundary to the present, we modeled oxygen concentrations over the past 205 million years. Our analysis indicates that atmospheric oxygen approximately doubled over this period, with relatively rapid increases in the early Jurassic and the Eocene. We suggest that the overall increase in oxygen, mediated by the formation of passive continental margins along the Atlantic Ocean during the opening phase of the current Wilson cycle, was a critical factor in the evolution, radiation, and subsequent increase in average size of placental mammals.

[1]  N. Shackleton 16. CARBON ISOTOPE DATA FROM LEG 74 SEDIMENTS , 2006 .

[2]  R. Shine Life-History Evolution in Reptiles , 2005 .

[3]  P. Falkowski,et al.  Biological overprint of the geological carbon cycle , 2005 .

[4]  E. Weibel,et al.  Exercise-induced maximal metabolic rate scales with muscle aerobic capacity , 2005, Journal of Experimental Biology.

[5]  R. Huey,et al.  Hypoxia, Global Warming, and Terrestrial Late Permian Extinctions , 2005, Science.

[6]  M. Novacek,et al.  Stem Lagomorpha and the Antiquity of Glires , 2005, Science.

[7]  M. Stanhope,et al.  Molecules consolidate the placental mammal tree. , 2004, Trends in ecology & evolution.

[8]  Paul G. Falkowski,et al.  The Evolution of Modern Eukaryotic Phytoplankton , 2004, Science.

[9]  K. Wallmann,et al.  Cretaceous and Cenozoic evolution of seawater composition, atmospheric O2 and CO2: A model perspective , 2003 .

[10]  S. O’Brien,et al.  Placental mammal diversification and the Cretaceous–Tertiary boundary , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[11]  R. Andrews Low Oxygen: A Constraint on the Evolution of Viviparity in Reptiles , 2002, Physiological and Biochemical Zoology.

[12]  Michael Ghil,et al.  ADVANCED SPECTRAL METHODS FOR CLIMATIC TIME SERIES , 2002 .

[13]  W. Murphy,et al.  Resolution of the Early Placental Mammal Radiation Using Bayesian Phylogenetics , 2001, Science.

[14]  J. Mortola,et al.  Respiratory Physiology of Newborn Mammals: A Comparative Perspective , 2001 .

[15]  R. Berner Modeling atmospheric O2 over Phanerozoic time , 2001 .

[16]  F. Morel,et al.  Unicellular C4 photosynthesis in a marine diatom , 2000, Nature.

[17]  Berner,et al.  Isotope fractionation and atmospheric oxygen: implications for phanerozoic O(2) evolution , 2000, Science.

[18]  A. J. Kaufman,et al.  THE ABUNDANCE OF 13C IN MARINE ORGANIC MATTER AND ISOTOPIC FRACTIONATION IN THE GLOBAL BIOGEOCHEMICAL CYCLE OF CARBON DURING THE PAST 800 MA , 1999 .

[19]  Michael A. Arthur,et al.  Interpreting carbon-isotope excursions: carbonates and organic matter , 1999 .

[20]  J. Alroy The fossil record of North American mammals: evidence for a Paleocene evolutionary radiation. , 1999, Systematic biology.

[21]  V. Smetácek,et al.  Diatoms and the ocean carbon cycle. , 1999, Protist.

[22]  J. Ehleringer,et al.  Global vegetation change through the Miocene/Pliocene boundary , 1997, Nature.

[23]  D. Canfield,et al.  A new model for atmospheric oxygen over Phanerozoic time. , 1989, American journal of science.

[24]  Robert L. Carroll,et al.  Vertebrate Paleontology and Evolution , 1988 .

[25]  John S. Lewis,et al.  Book Review: The chemical evolution of the atmosphere and oceans. By Heinrich D. Holland. Princeton Univ. Press, Princeton, N.J., 1984. pp., pb 24.50, hb 75.00 , 1985 .

[26]  G. Somero,et al.  Biochemical Adaptation: Mechanism and Process in Physiological Evolution , 1984 .

[27]  A. Hulbert,et al.  Comparison of the "mammal machine" and the "reptile machine": energy production. , 1981, The American journal of physiology.

[28]  O. Hayaishi Molecular oxygen in biology : topics in molecular oxygen research , 1974 .