On influence, stable behavior, and the most influential individuals in networks: A game-theoretic approach

We introduce a new approach to the study of influence in strategic settings where the action of an individual depends on that of others in a network-structured way. We propose network influence games as a game-theoretic model of the behavior of a large but finite networked population. In particular, we study an instance we call linear-influence games that allows both positive and negative influence factors, permitting reversals in behavioral choices. We embrace pure-strategy Nash equilibrium, an important solution concept in non-cooperative game theory, to formally define the stable outcomes of a network influence game and to predict potential outcomes without explicitly considering intricate dynamics. We address an important problem in network influence, the identification of the most influential individuals, and approach it algorithmically using pure-strategy Nash-equilibria computation. Computationally, we provide (a) complexity characterizations of various problems on linear-influence games; (b) efficient algorithms for several special cases and heuristics for hard cases; and (c) approximation algorithms, with provable guarantees, for the problem of identifying the most influential individuals. Experimentally, we evaluate our approach using both synthetic network influence games and real-world settings of general interest, each corresponding to a separate branch of the U.S. Government. Mathematically, we connect linear-influence games to important models in game theory: potential and polymatrix games.

[1]  N. Christakis,et al.  The Spread of Obesity in a Large Social Network Over 32 Years , 2007, The New England journal of medicine.

[2]  Peter Norvig,et al.  Artificial Intelligence: A Modern Approach , 1995 .

[3]  M. Irfan Causal Strategic Inference in Social and Economic Networks , 2013 .

[4]  L. Shapley,et al.  REGULAR ARTICLEPotential Games , 1996 .

[5]  Luis E. Ortiz,et al.  Learning the structure and parameters of large-population graphical games from behavioral data , 2012, J. Mach. Learn. Res..

[6]  Luis E. Ortiz,et al.  A Game-Theoretic Approach to Influence in Networks , 2011, AAAI.

[7]  E. Young Contagion , 2015, New Scientist.

[8]  Bruce Bueno de Mesquita,et al.  An Introduction to Game Theory , 2014 .

[9]  Robert Montgomery,et al.  Introduction to the Sociology of Missions , 1999 .

[10]  L. Shapley A Value for n-person Games , 1988 .

[11]  D. M. Topkis Equilibrium Points in Nonzero-Sum n-Person Submodular Games , 1979 .

[12]  G. L. Bon,et al.  Scientific Literature: The Crowd. A Study of the Popular Mind , 1897 .

[13]  Thomas C. Schelling,et al.  Dynamic models of segregation , 1971 .

[14]  Yifei Yuan,et al.  Influence Maximization in Social Networks When Negative Opinions May Emerge and Propagate , 2011, SDM.

[15]  Maria J. Serna,et al.  Power Indices of Influence Games and New Centrality Measures for Agent Societies and Social Networks , 2014, ISAmI.

[16]  Richard M. Karp,et al.  Reducibility Among Combinatorial Problems , 1972, 50 Years of Integer Programming.

[17]  Nicholas R. Jennings,et al.  Efficient Computation of the Shapley Value for Game-Theoretic Network Centrality , 2014, J. Artif. Intell. Res..

[18]  Peter Bardsley,et al.  Rent seeking and judicial bias in weak legal systems , 2005 .

[19]  Giorgio Ausiello,et al.  Structure Preserving Reductions among Convex Optimization Problems , 1980, J. Comput. Syst. Sci..

[20]  Antoni Calvó-Armengol,et al.  Centre De Referència En Economia Analítica Barcelona Economics Working Paper Series Working Paper Nº 178 Who's Who in Networks. Wanted: the Key Player Who's Who in Networks. Wanted: the Key Player Barcelona Economics Wp Nº 178 , 2022 .

[21]  S. Vajda,et al.  GAMES AND DECISIONS; INTRODUCTION AND CRITICAL SURVEY. , 1958 .

[22]  J. Kleinberg Algorithmic Game Theory: Cascading Behavior in Networks: Algorithmic and Economic Issues , 2007 .

[23]  David S. Johnson,et al.  Approximation algorithms for combinatorial problems , 1973, STOC.

[24]  J. Geanakoplos,et al.  Multimarket Oligopoly: Strategic Substitutes and Complements , 1985, Journal of Political Economy.

[25]  David M. Sobel,et al.  A theory of causal learning in children: causal maps and Bayes nets. , 2004, Psychological review.

[26]  M. Chwe Structure and Strategy in Collective Action1 , 1999, American Journal of Sociology.

[27]  Howard Kunreuther,et al.  Modeling Interdependent Risks , 2007, Risk analysis : an official publication of the Society for Risk Analysis.

[28]  Gary T. Marx,et al.  Collective Behavior And Social Movements: Process and Structure , 1993 .

[29]  D. Fudenberg,et al.  The Theory of Learning in Games , 1998 .

[30]  Eyal Even-Dar,et al.  A note on maximizing the spread of influence in social networks , 2007, Inf. Process. Lett..

[31]  H. Kunreuther,et al.  Interdependent Security , 2003 .

[32]  R. Aumann Subjectivity and Correlation in Randomized Strategies , 1974 .

[33]  M. Dufwenberg Game theory. , 2011, Wiley interdisciplinary reviews. Cognitive science.

[34]  Roger D. Congleton A Political Efficiency Case for Federalism in Multinational States: Controlling Ethnic Rent-Seeking , 2000 .

[35]  Stanley Wasserman,et al.  Social Network Analysis: Methods and Applications , 1994, Structural analysis in the social sciences.

[36]  Giorgio Ausiello,et al.  On the Structure of Combinatorial Problems and Structure Preserving Reductions , 1977, ICALP.

[37]  Paul W. Goldberg,et al.  The complexity of computing a Nash equilibrium , 2006, STOC '06.

[38]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[39]  T. Schelling Micromotives and Macrobehavior , 1978 .

[40]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[41]  Howard Kunreuther,et al.  Supermodularity and Tipping , 2006 .

[42]  Richard A. Berk,et al.  A Gaming Approach to Crowd Behavior , 1974 .

[43]  N. Christakis,et al.  SUPPLEMENTARY ONLINE MATERIAL FOR: The Collective Dynamics of Smoking in a Large Social Network , 2022 .

[44]  Wei Chen,et al.  Influence Blocking Maximization in Social Networks under the Competitive Linear Threshold Model , 2011, SDM.

[45]  Matthew Richardson,et al.  Mining the network value of customers , 2001, KDD '01.

[46]  Peter J. Mucha,et al.  Portrait of Political Party Polarization1 , 2013, Network Science.

[47]  R. Park,et al.  Introduction to the Science of Sociology , 1921 .

[48]  Donald M. Topkis,et al.  Minimizing a Submodular Function on a Lattice , 1978, Oper. Res..

[49]  R. Aumann Correlated Equilibrium as an Expression of Bayesian Rationality Author ( s ) , 1987 .

[50]  Yves Zenou,et al.  Who's Who in Crime Network. Wanted the Key Player , 2004 .

[51]  Luis E. Ortiz,et al.  Algorithms for Interdependent Security Games , 2003, NIPS.

[52]  L. Shapley,et al.  Potential Games , 1994 .

[53]  Cécile Favre,et al.  Information diffusion in online social networks: a survey , 2013, SGMD.

[54]  Paul R. Milgrom,et al.  Rationalizability, Learning, and Equilibrium in Games with Strategic Complementarities , 1990 .

[55]  Mark S. Granovetter Threshold Models of Collective Behavior , 1978, American Journal of Sociology.

[56]  Pierre Salmon,et al.  Competition and structure : the political economy of collective decisions : essays in honor of Albert Breton , 2000 .

[57]  Robert F. Bales,et al.  Review of Sociology: Analysis of a Decade. , 1958 .

[58]  H. Chaiklin,et al.  The Myth of the Madding Crowd , 1992 .

[59]  P. Gordon,et al.  Global business and the terrorist threat , 2009 .

[60]  N. Nisan Introduction to Mechanism Design (for Computer Scientists) , 2007 .

[61]  C. Tilly From mobilization to revolution , 1978 .

[62]  Christos H. Papadimitriou,et al.  The complexity of pure Nash equilibria , 2004, STOC '04.

[63]  Michael Kearns,et al.  Competitive contagion in networks , 2011, STOC '12.

[64]  B. Bollobás The evolution of random graphs , 1984 .

[65]  Luis E. Ortiz,et al.  Nash Propagation for Loopy Graphical Games , 2002, NIPS.

[66]  P. Erdos,et al.  On the evolution of random graphs , 1984 .

[67]  N. Christakis,et al.  Dynamic spread of happiness in a large social network: longitudinal analysis over 20 years in the Framingham Heart Study , 2008, BMJ : British Medical Journal.

[68]  David L. Miller,et al.  Introduction to Collective Behavior and Collective Action , 2000 .

[69]  Éva Tardos,et al.  Maximizing the Spread of Influence through a Social Network , 2015, Theory Comput..

[70]  Lars Backstrom,et al.  Structural diversity in social contagion , 2012, Proceedings of the National Academy of Sciences.

[71]  Y. Narahari,et al.  A Shapley Value-Based Approach to Discover Influential Nodes in Social Networks , 2011, IEEE Transactions on Automation Science and Engineering.

[72]  Mark S. Granovetter,et al.  Threshold models of diffusion and collective behavior , 1983 .

[73]  Howard Kunreuther,et al.  You Can Only Die Once: Interdependent Security in an Uncertain World , 2005 .

[74]  Alexander Schrijver,et al.  Combinatorial optimization. Polyhedra and efficiency. , 2003 .

[75]  T. Dawber,et al.  The Framingham Study: The Epidemiology of Atherosclerotic Disease , 1980 .

[76]  Michael L. Littman,et al.  Graphical Models for Game Theory , 2001, UAI.

[77]  G. Becker,et al.  A Theory of Competition Among Pressure Groups for Political Influence , 1983 .

[78]  Howard Kunreuther,et al.  Assessing, Managing and Benefiting from Global Interdependent Risks: The Case of Terrorism and National Disasters , 2007 .

[79]  Adrian Kuhn Collective Behavior , 2007 .

[80]  Georg Gottlob,et al.  Pure Nash equilibria: hard and easy games , 2003, TARK '03.

[81]  Ran Raz,et al.  A sub-constant error-probability low-degree test, and a sub-constant error-probability PCP characterization of NP , 1997, STOC '97.

[82]  Daphne Koller,et al.  Multi-agent algorithms for solving graphical games , 2002, AAAI/IAAI.

[83]  Gilat Levy,et al.  Gradualism in dynamic influence games , 2010 .

[84]  John E. Hopcroft,et al.  Complexity of Computer Computations , 1974, IFIP Congress.

[85]  Divyakant Agrawal,et al.  Limiting the spread of misinformation in social networks , 2011, WWW.

[86]  Maria J. Serna,et al.  Power indices of influence games and new centrality measures for social networks , 2013, ArXiv.

[87]  Eric van Damme,et al.  Non-Cooperative Games , 2000 .

[88]  H. Kunreuther,et al.  You Only Die Once: Managing Discrete Interdependent Risks , 2003 .