A Note on Fractional Sumudu Transform

We propose a new definition of a fractional-order Sumudu transform for fractional differentiable functions. In the development of the definition we use fractional analysis based on the modified Riemann-Liouville derivative that we name the fractional Sumudu transform. We also established a relationship between fractional Laplace and Sumudu duality with complex inversion formula for fractional Sumudu transform and apply new definition to solve fractional differential equations.

[1]  Octave Levenspiel,et al.  Ingeniería de las reacciones químicas , 1978 .

[2]  L. Douglas Smoot,et al.  Coal Combustion and Gasification , 1985 .

[3]  E. R. V. Driest On Turbulent Flow Near a Wall , 1956 .

[4]  Cristóbal Cortés,et al.  Modeling the gas and particle flow inside cyclone separators , 2007 .

[5]  Philip J. Smith,et al.  Predicting Radiative Transfer in Rectangular Enclosures Using the Discrete Ordinates Method , 1988 .

[6]  Mohamed Pourkashanian,et al.  Burn-out of pulverised coal and biomass chars☆☆ , 2003 .

[7]  Calvin H. Bartholomew,et al.  Effects of Pyrolysis Heating Rate on Intrinsic Reactivities of Coal Chars , 1996 .

[8]  Inmaculada Arauzo,et al.  Monitoring and prediction of fouling in coal-fired utility boilers using neural networks , 2005 .

[9]  Klaus R. G. Hein,et al.  On the Application of the Thiele/Zeldovich Analysis to Porous Carbon Combustion , 2003 .

[10]  Mohamed Pourkashanian,et al.  Modelling coal combustion: the current position , 2002 .

[11]  Erik Thomsen,et al.  Evaluation of the chemical properties of coals and their maceral group constituents in relation to combustion reactivity using multi-variate analyses , 1998 .

[12]  Simeon N. Oka,et al.  Three-dimensional modeling of utility boiler pulverized coal tangentially fired furnace , 2006 .

[13]  Eric M. Suuberg,et al.  Thermally Induced Changes in Reactivity of Carbons , 1991 .

[14]  Erik Dick,et al.  Introduction to finite volume methods in computational fluid dynamics , 2009 .

[15]  Peter R. Solomon,et al.  The prediction of coal char reactivity under combustion conditions , 1992 .

[16]  M. Mulcahy,et al.  Kinetics of the graphite-oxygen reaction near 1000°K , 1976 .

[17]  Joel H. Ferziger,et al.  Computational methods for fluid dynamics , 1996 .

[18]  Yoh-Han Pao,et al.  Adaptive pattern recognition and neural networks , 1989 .

[19]  Luis Ignacio Díez Pinilla Monitorización y simulación en tiempo real de calderas de potencia de carbón pulverizado , 2003 .

[20]  Luis M. Romeo,et al.  Neural network for evaluating boiler behaviour , 2006 .

[21]  Adem Kilicman,et al.  On Sumudu Transform and System of Differential Equations , 2010 .

[22]  Inmaculada Arauzo,et al.  Integration of CFD codes and advanced combustion models for quantitative burnout determination , 2007 .

[23]  Ralph J. Tyler,et al.  Internal burning of pulverized semi-anthracite: the relation between particle structure and reactivity , 1972 .

[24]  Douglas C. Montgomery Diseño y análisis de experimentos , 1991 .

[25]  A. Berlemont,et al.  Eulerian and Lagrangian approaches for predicting the behaviour of discrete particles in turbulent flows , 1999 .

[26]  Sandra M. Richardson,et al.  The order, Arrhenius parameters, and mechanism of the reaction between gaseous oxygen and solid carbon , 2001 .

[27]  Guy Jumarie,et al.  Laplace's transform of fractional order via the Mittag-Leffler function and modified Riemann-Liouville derivative , 2009, Appl. Math. Lett..

[28]  E. Mizutani,et al.  Neuro-Fuzzy and Soft Computing-A Computational Approach to Learning and Machine Intelligence [Book Review] , 1997, IEEE Transactions on Automatic Control.

[29]  J. B. Howard,et al.  TOWARD A UNIFIED COMBUSTION THEORY - The Pyrolysis and Combustion Mechanism of Carbonaceous Solids , 1966 .

[30]  Edward Lester,et al.  Prediction of the burnout performance of some South American coals using a drop-tube furnace☆ , 2003 .

[31]  I. W. Smith,et al.  Kinetics of combustion of size-graded pulverized fuels in the temperature range 1200–2270°K , 1971 .

[32]  Christopher M. Bishop,et al.  Neural networks for pattern recognition , 1995 .

[33]  Inmaculada Arauzo,et al.  Numerical prediction of unburned carbon levels in large pulverized coal utility boilers , 2005 .

[34]  Edward Lester,et al.  Characterisation of the properties of size fractions from ten world coals and their chars produced in a drop-tube furnace ☆ , 2002 .

[35]  R. Borghi Turbulent combustion modelling , 1988 .

[36]  Jose Velilla Lomba Estudio del flujo en el interior del conducto de extracción de sólidos de un ciclón de una central térmica de lecho fluido a presión , 2005 .

[37]  Kevin Davis,et al.  Computational investigation of carbon-in-ash levels for a wall-fired boiler after low-NOx combustion modifications , 1998 .

[38]  D. Förtsch,et al.  Combustion characteristics of carbon : Dependence of the Zone I-Zone II transition temperature (Tc) on particle radius , 1999 .

[39]  R. Hurt,et al.  On the origin of power-law kinetics in carbon oxidation , 2005 .

[40]  Mohamed Pourkashanian,et al.  An extended coal combustion model , 1999 .

[41]  A. M. Mathai,et al.  Reaction-Diffusion Systems and Nonlinear Waves , 2006 .

[42]  Mohamed Pourkashanian,et al.  The Reactivity of Coal Chars Gasified in a Carbon Dioxide Environment , 1993 .

[43]  Guy Jumarie,et al.  Table of some basic fractional calculus formulae derived from a modified Riemann-Liouville derivative for non-differentiable functions , 2009, Appl. Math. Lett..

[44]  J. L. T. Azevedo,et al.  3-D numerical model for predicting NOx emissions from an industrial pulverized coal combustor , 1994 .

[45]  Lin Ma,et al.  Prediction of unburned carbon and NOx in a tangentially fired power station using single coals and blends , 2005 .

[46]  Anne M. Carpenter,et al.  Coal combustion - analysis and testing , 1993 .

[47]  C. K. Tan,et al.  Use of artificial intelligence techniques for optimisation of co-combustion of coal with biomass , 2006 .

[48]  A. Sarofim,et al.  Coal devolatilization at high temperatures , 1977 .

[49]  J. Craggs Applied Mathematical Sciences , 1973 .

[50]  Jean M. Tchuenche,et al.  AN APPLICATION OF THE DOUBLE SUMUDU TRANSFORM , 2007 .

[51]  I. Smith,et al.  The intrinsic reactivity of carbons to oxygen , 1978 .

[52]  Peter Glarborg,et al.  Influence of coal quality on combustion performance , 1998 .

[53]  Robert H. Hurt,et al.  Reactivity distributions and extinction phenomena in coal char combustion , 1993 .

[54]  M. Carsky,et al.  Neural network modelling of coal pyrolysis , 2001 .

[55]  Stephen Niksa Coal combustion modelling , 1996 .

[56]  I. Smith,et al.  Kinetics of combustion of a pulverized brown coal char between 630 and 2200°K , 1973 .

[57]  J. Howard,et al.  Pyrolysis of coal particles in pulverized fuel flames , 1966 .

[58]  Alan Williams,et al.  The predictions of coal/char combustion rate using an artificial neural network approach , 1999 .

[59]  D. Spalding A Single Formula for the “Law of the Wall” , 1961 .

[60]  Rutherford Aris,et al.  Communications on the theory of diffusion and reaction—VII The isothermal pth order reaction , 1971 .

[61]  Weeratunge Malalasekera,et al.  An introduction to computational fluid dynamics - the finite volume method , 2007 .

[62]  Zhou Hao,et al.  Combining neural network and genetic algorithms to optimize low NOx pulverized coal combustion , 2001 .

[63]  Russell C. Eberhart,et al.  Neural network PC tools , 1990 .

[64]  Peter R. Solomon,et al.  Network models of coal thermal decomposition , 1990 .

[65]  I. W. Smith,et al.  The combustion rates of coal chars: A review , 1982 .

[66]  Robert H. Hurt,et al.  A Kinetic Model of Carbon Burnout in Pulverized Coal Combustion , 1998 .

[67]  Adem Kilicman,et al.  A new integral transform and associated distributions , 2010 .

[68]  Angeles G. Borrego,et al.  Char characterization and DTF assays as tools to predict burnout of coal blends in power plants , 2005 .

[69]  Peter R. Solomon,et al.  A characterization method and model for predicting coal conversion behaviour , 1993 .

[70]  C. Crowe,et al.  The Particle-Source-In Cell (PSI-CELL) Model for Gas-Droplet Flows , 1977 .

[71]  Robert H. Hurt,et al.  Mechanisms of extinction and near-extinction in pulverized solid fuel combustion , 2000 .

[72]  B. Launder,et al.  The numerical computation of turbulent flows , 1990 .

[73]  P. L. Stephenson Mathematical modelling of semi-anthracite combustion in a single burner furnace , 2003 .

[74]  Reginald E. Mitchell,et al.  On the temperature and reaction rate of burning pulverized fuels , 1982 .

[75]  M. Modest Radiative heat transfer , 1993 .

[76]  Robert H. Essenhigh,et al.  High intensity combustion of coal , 1982 .

[77]  A. F. Sarofim,et al.  Characteristics of single particle coal combustion , 1982 .

[78]  S. Turns Introduction to Combustion , 1995, Aerothermodynamics and Jet Propulsion.

[79]  Mohamed Pourkashanian,et al.  Modelling the relationship of coal structure to char porosity , 1999 .

[80]  D. D. Perlmutter,et al.  A random pore model for fluid‐solid reactions: II. Diffusion and transport effects , 1981 .

[81]  Muniru A. Asiru,et al.  Sumudu transform and the solution of integral equations of convolution type , 2001 .

[82]  F. Lockwood,et al.  A new radiation solution method for incorporation in general combustion prediction procedures , 1981 .

[83]  Hisao Makino,et al.  Combustion characteristics of high ash coal in a pulverized coal combustion , 2001 .

[84]  L. Douglas Smoot,et al.  Model for pulverized coal-fired reactors , 1981 .

[85]  Robert H. Hurt,et al.  Unified high-temperature char combustion kinetics for a suite of coals of various rank , 1992 .

[86]  W. A. Fiveland,et al.  An Efficient Method for Predicting Unburned Carbon in Boilers , 1992 .

[87]  M. Mercedes Maroto-Valer,et al.  Characterization of differing forms of unburned carbon present in fly ash separated by density gradient centrifugation , 2001 .

[88]  Mohamed Pourkashanian,et al.  The oxidative reactivity of coal chars in relation to their structure , 1999 .

[89]  Muniru A. Asiru,et al.  Further properties of the Sumudu transform and its applications , 2002 .

[90]  J. Tomeczek,et al.  Kinetics of mineral matter transformation during coal combustion , 2002 .

[91]  Adem Kiliçman,et al.  On the applications of Laplace and Sumudu transforms , 2010, J. Frankl. Inst..

[92]  A. M. Eaton,et al.  Components, formulations, solutions, evaluation, and application of comprehensive combustion models , 1999 .

[93]  M. Baum,et al.  Predicting the Combustion Behaviour of Coal Particles , 1971 .

[94]  A. F. Sarofim,et al.  Fossil fuel combustion , 1990 .

[95]  Robert H. Hurt,et al.  Size distribution of unburned carbon in coal fly ash and its implications , 2004 .

[96]  P. G. W. Hawksley,et al.  Kinetics of Thermal Decomposition of Pulverized Coal Particles , 1970 .

[97]  John F. Stubington,et al.  The effects of fragmentation on devolatilization of large coal particles , 1989 .

[98]  J. Shuen,et al.  A coupled multi-block solution procedure for spray combustion in complex geometries , 1993 .

[99]  Robert H. Hurt,et al.  Thermal Annealing of Chars from Diverse Organic Precursors under Combustion-like Conditions , 2000 .

[100]  David B. Stickler,et al.  Rapid devolatilization of pulverized coal in hot combustion gases , 1977 .

[101]  Shyam L. Kalla,et al.  ANALYTICAL INVESTIGATIONS OF THE SUMUDU TRANSFORM AND APPLICATIONS TO INTEGRAL PRODUCTION EQUATIONS , 2003 .

[102]  Margaret S. Wooldridge,et al.  Co-firing of coal and biomass fuel blends , 2001 .

[103]  Philip J Stopford,et al.  Recent applications of CFD modelling in the power generation and combustion industries , 2002 .

[104]  Anil Date,et al.  Introduction to Computational Fluid Dynamics , 2023, essentials.

[105]  G. K. Watugala,et al.  Sumudu Transform - a New Integral Transform to Solve Differential Equations and Control Engineering Problems , 1992 .

[106]  Alan R. Kerstein,et al.  Chemical model of coal devolatilization using percolation lattice statistics , 1989 .

[107]  Adem Kilicman,et al.  A note on integral transforms and partial differential equations , 2010 .

[108]  Tom Vi,et al.  ANALELE UNIVERSITATII DIN ORADEA , 1998 .

[109]  Tao Wu,et al.  Char characterisation and its application in a coal burnout model , 2003 .

[110]  Peter R. Solomon,et al.  General model of coal devolatilization , 1987 .

[111]  Zhangfa Wu Prevention of particulate emissions , 2000 .

[112]  R. Essenhigh,et al.  Combustion Characteristics of Carbon: Influence of the Zone I−Zone II Transition on Burn-Out in Pulverized Coal Flames , 1999 .

[113]  Muniru A. Asiru,et al.  Classroom note: Application of the Sumudu transform to discrete dynamic systems , 2003 .

[114]  I. W. Smith,et al.  The kinetics of combustion of pulverized semi-anthracite in the temperature range 1400–2200°K , 1971 .

[115]  Mohamed Pourkashanian,et al.  Combustion rates of chars and carbonaceous residues , 1989 .

[116]  B. C. Young,et al.  The combustion of Loy Yang brown coal char , 1989 .

[117]  Narendra J. Sheth,et al.  Statistical Design and Analysis of Engineering Experiments , 1973 .

[118]  Thomas H. Fletcher,et al.  PREDICTING EFFECTIVENESS FACTOR FOR M-TH ORDER AND LANGMUIR RATE EQUATIONS IN SPHERICAL COORDINATES , 1999 .

[119]  John Kent,et al.  A computational study of heterogeneous char reactions in a full-scale furnace , 1994 .

[120]  C. A. Gurgel Veras,et al.  Overlapping of the devolatilization and char combustion stages in the burning of coal particles , 1999 .

[121]  George R. Gavalas,et al.  Analysis of Char Combustion Including the Effect of Pore Enlargement , 1980 .

[122]  Scott C. Hill,et al.  Parametric sensitivity study of a CFD‐based coal combustion model , 1993 .

[123]  Guy Jumarie,et al.  Fractional partial differential equations and modified Riemann-Liouville derivative new methods for solution , 2007 .

[124]  Edward Lester,et al.  Combustion characteristics of coals using a drop-tube furnace☆ , 2002 .

[125]  Eric M. Suuberg,et al.  Changes in reactive surface area and porosity during char oxidation , 1998 .

[126]  Agnieszka B. Malinowska,et al.  A fractional calculus of variations for multiple integrals with application to vibrating string , 2010, 1001.2722.