Practical tools for third order cosmological perturbations

We discuss cosmological perturbation theory at third order, deriving the gauge transformation rules for metric and matter perturbations, and constructing third order gauge invariant quantities. We present the Einstein tensor components, the evolution equations for a perfect fluid, and the Klein-Gordon equation at third order, including scalar, vector and tensor perturbations. In doing so, we also give all second order tensor components and evolution equations in full generality.

[1]  E. Lifshitz Republication of: On the gravitational stability of the expanding universe , 2017, General Relativity and Gravitation.

[2]  C. Clarkson,et al.  Influence of structure formation on the cosmic expansion , 2009, 0907.3377.

[3]  Jean-Luc Lehners,et al.  Multifield cosmological perturbations at third order and the ekpyrotic trispectrum , 2009, 1004.3688.

[4]  Karim A. Malik,et al.  Vorticity generation at second order , 2009 .

[5]  Karim A. Malik,et al.  Vorticity generation at second order in cosmological perturbation theory , 2009, 0904.0940.

[6]  Karim A. Malik,et al.  The non-adiabatic pressure in general scalar field systems , 2008, 0809.3518.

[7]  F. Vernizzi,et al.  Inflationary trispectrum from graviton exchange , 2008, 0811.3934.

[8]  Karim A. Malik,et al.  A concise introduction to perturbation theory in cosmology , 2008, 0804.3276.

[9]  Karim A. Malik,et al.  Non-Gaussianity of inflationary field perturbations from the field equation , 2008, 0802.0588.

[10]  H. Noh,et al.  Third-order cosmological perturbations of zero-pressure multi-component fluids: pure general relativistic non-linear effects , 2007, 0704.2086.

[11]  Kasper Peeters,et al.  Cadabra: a field-theory motivated symbolic computer algebra system , 2006, Comput. Phys. Commun..

[12]  Kasper Peeters,et al.  Introducing Cadabra: a symbolic computer algebra system for field theory problems , 2007, hep-th/0701238.

[13]  F. Vernizzi,et al.  Covariant generalization of cosmological perturbation theory , 2006, gr-qc/0611020.

[14]  Karim A. Malik A not so short note on the Klein–Gordon equation at second order , 2006, astro-ph/0610864.

[15]  J. Hwang,et al.  Third-order perturbations of a zero-pressure cosmological medium : Pure general relativistic nonlinear effects , 2004, gr-qc/0412129.

[16]  Karim A. Malik,et al.  A general proof of the conservation of the curvature perturbation , 2004, astro-ph/0411220.

[17]  Kouji Nakamura Second-Order Gauge Invariant Perturbation Theory --- Perturbative Curvatures in the Two-Parameter Case , 2004, gr-qc/0410024.

[18]  E. Komatsu,et al.  Non-Gaussianity from inflation: theory and observations , 2004, Physics Reports.

[19]  J. Hwang,et al.  Second-order perturbations of the Friedmann world model , 2003, astro-ph/0305123.

[20]  Karim A. Malik,et al.  Evolution of second-order cosmological perturbations , 2003, astro-ph/0307055.

[21]  J. Maldacena Non-Gaussian features of primordial fluctuations in single field inflationary models , 2002, astro-ph/0210603.

[22]  Ruth A. Daly,et al.  Cosmological Inflation and Large-Scale Structure , 2001 .

[23]  D. Langlois Brane cosmological perturbations , 2000, hep-th/0005025.

[24]  R. Brandenberger,et al.  BACKREACTION PROBLEM FOR COSMOLOGICAL PERTURBATIONS , 1997 .

[25]  S. Matarrese,et al.  Perturbations of spacetime: gauge transformations and gauge invariance at second order and beyond , 1996, gr-qc/9609040.

[26]  R. Durrer Gauge invariant cosmological perturbation theory: A General study and its application to the texture scenario of structure formation , 1993 .

[27]  Hume A. Feldman,et al.  Theory of cosmological perturbations , 1992 .

[28]  Bond,et al.  Nonlinear evolution of long-wavelength metric fluctuations in inflationary models. , 1990, Physical review. D, Particles and fields.

[29]  H. Kodama,et al.  Cosmological Perturbation Theory , 1984 .

[30]  Michael S. Turner,et al.  Spontaneous Creation of Almost Scale - Free Density Perturbations in an Inflationary Universe , 1983 .

[31]  J. Bardeen,et al.  Gauge Invariant Cosmological Perturbations , 1980 .

[32]  K. Tomita NON-LINEAR THEORY OF GRAVITATIONAL INSTABILITY IN THE EXPANDING UNIVERSE. III. , 1967 .

[33]  W. B. Bonnor,et al.  Jeans' Formula for Gravitational Instability , 1957 .