A micropower programmable DSP using approximate signal processing based on distributed arithmetic

A recent trend in low-power design has been the employment of reduced precision processing methods for decreasing arithmetic activity and average power dissipation. Such designs can trade off power and arithmetic precision as system requirements change. This work explores the potential of distributed arithmetic (DA) computation structures for low-power precision-on-demand computation. We present an ultralow-power DSP which uses variable precision arithmetic, low-voltage circuits, and conditional clocks to implement a biomedical detection and classification algorithm using only 560 nW. Low energy consumption enables self-powered operation using ambient mechanical vibrations, converted to electric energy by a MEMS transducer and accompanying power electronics. The MEMS energy scavenging system is estimated to deliver 4.3 to 5.6 /spl mu/W of power to the DSP load.

[1]  K. Azadet,et al.  A low power 128-tap digital adaptive equalizer for broadband modems , 1997, 1997 IEEE International Solids-State Circuits Conference. Digest of Technical Papers.

[2]  A. Chandrakasan,et al.  A micropower programmable DSP powered using a MEMS-based vibration-to-electric energy converter , 2000, 2000 IEEE International Solid-State Circuits Conference. Digest of Technical Papers (Cat. No.00CH37056).

[3]  Masahiko Yoshimoto,et al.  A 100-MHz 2-D discrete cosine transform core processor , 1992 .

[4]  Masaki Tsukude,et al.  A 1.2- to 3.3-V wide voltage-range/low-power DRAM with a charge-transfer presensing scheme , 1997, IEEE J. Solid State Circuits.

[5]  S.A. White,et al.  Applications of distributed arithmetic to digital signal processing: a tutorial review , 1989, IEEE ASSP Magazine.

[6]  Anantha P. Chandrakasan,et al.  An energy/security scalable encryption processor using an embedded variable voltage DC/DC converter , 1998 .

[7]  B.J. Hosticka,et al.  A programmable intraocular CMOS pressure sensor system implant , 2001, Proceedings of the 26th European Solid-State Circuits Conference.

[8]  Bede Liu,et al.  A new hardware realization of digital filters , 1974 .

[9]  Larsson,et al.  Self-adjusting Bit-precision For Low-power Digital Filters , 1997, Symposium 1997 on VLSI Circuits.

[10]  Anantha P. Chandrakasan,et al.  Low Power Digital CMOS Design , 1995 .

[11]  A. Chandrakasan,et al.  A low-power DCT core using adaptive bitwidth and arithmetic activity exploiting signal correlations and quantization , 1999, IEEE Journal of Solid-State Circuits.

[12]  Ting Chen,et al.  VLSI implementation of a 16*16 discrete cosine transform , 1989 .

[13]  Chi-Ying Tsui,et al.  A power estimation framework for designing low power portable video applications , 1997, DAC.

[14]  Paul D. Franzon,et al.  Energy consumption modeling and optimization for SRAM's , 1995, IEEE J. Solid State Circuits.

[15]  Neil Weste,et al.  Principles of CMOS VLSI Design , 1985 .

[16]  D. G. Gata,et al.  Analog processing circuits for a 1.1 V 270 /spl mu/A mixed-signal hearing aid chip , 2002, 2002 IEEE International Solid-State Circuits Conference. Digest of Technical Papers (Cat. No.02CH37315).

[17]  Ganesh Gopalakrishnan,et al.  A fast parallel squarer based on divide-and-conquer , 1997 .

[18]  Anantha Chandrakasan,et al.  Vibration-to-electric energy conversion , 1999, Proceedings. 1999 International Symposium on Low Power Electronics and Design (Cat. No.99TH8477).

[19]  A.P. Chandrakasan,et al.  Dual-threshold voltage techniques for low-power digital circuits , 2000, IEEE Journal of Solid-State Circuits.

[20]  C.J. Pau,et al.  A stereo audio chip using approximate processing for decimation and interpolation filters , 2000, IEEE Journal of Solid-State Circuits.

[21]  Jan M. Rabaey,et al.  Architectural power analysis: The dual bit type method , 1995, IEEE Trans. Very Large Scale Integr. Syst..

[22]  Anantha P. Chandrakasan,et al.  Low-power digital filtering using approximate processing , 1996 .

[23]  D. G. Gata Erratum "A 1.1-V 270- a mixed-signal hearing aid chip" , 2003 .