Priestley Style Duality for Distributive Meet-semilattices

We generalize Priestley duality for distributive lattices to a duality for distributive meet-semilattices. On the one hand, our generalized Priestley spaces are easier to work with than Celani’s DS-spaces, and are similar to Hansoul’s Priestley structures. On the other hand, our generalized Priestley morphisms are similar to Celani’s meet-relations and are more general than Hansoul’s morphisms. As a result, our duality extends Hansoul’s duality and is an improvement of Celani’s duality.