The geometric integration of scale-invariant ordinary and partial differential equations

[1]  A. Arakawa Computational design for long-term numerical integration of the equations of fluid motion: two-dimen , 1997 .

[2]  H. Weinberger,et al.  Maximum principles in differential equations , 1967 .

[3]  Y. Zel’dovich,et al.  Gas Dynamics. (Book Reviews: Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena. Vol. 1) , 1970 .

[4]  J. Craggs Applied Mathematical Sciences , 1973 .

[5]  G. Carrier,et al.  The Pointless Wedge , 1973 .

[6]  S. Kamenomostskaya,et al.  The asymptotic behaviour of the solution of the filtration equation , 1973 .

[7]  Victor Pereyra,et al.  Mesh selection for discrete solution of boundary problems in ordinary differential equations , 1974 .

[8]  Lawrence Dresner,et al.  Similarity solutions of nonlinear partial differential equations , 1983 .

[9]  M. Golubitsky,et al.  Singularities and groups in bifurcation theory , 1985 .

[10]  P. Olver Applications of Lie Groups to Differential Equations , 1986 .

[11]  E. Dorfi,et al.  Simple adaptive grids for 1-d initial value problems , 1987 .

[12]  N. Goldenfeld,et al.  Intermediate asymptotics and renormalization group theory , 1989 .

[13]  Jerrold Bebernes,et al.  Mathematical Problems from Combustion Theory , 1989 .

[14]  John Norbury,et al.  Generalised Lagrangian solutions for atmospheric and oceanic flows , 1991 .

[15]  J. Vázquez An Introduction to the Mathematical Theory of the Porous Medium Equation , 1992 .

[16]  R. McLachlan Symplectic integration of Hamiltonian wave equations , 1993 .

[17]  Weizhang Huang,et al.  Moving Mesh Methods Based on Moving Mesh Partial Differential Equations , 1994 .

[18]  Josephus Hulshof,et al.  Self-similar solutions of the second kind for the modified porous medium equation , 1994, European Journal of Applied Mathematics.

[19]  A. P. Mikhailov,et al.  Blow-Up in Quasilinear Parabolic Equations , 1995 .

[20]  G. I. Barenblatt Scaling: Self-similarity and intermediate asymptotics , 1996 .

[21]  Robert D. Russell,et al.  Moving Mesh Methods for Problems with Blow-Up , 1996, SIAM J. Sci. Comput..

[22]  Elizabeth L. Mansfield,et al.  The differential algebra package diffgrob2 , 1996 .

[23]  Numerical methods on (and off) manifolds , 1997 .

[24]  Weizhang Huang,et al.  A high dimensional moving mesh strategy , 1998 .

[25]  Self-Similar Fold Evolution Under Prescribed End-Shortening , 1999 .

[26]  Arieh Iserles,et al.  Geometric integration: numerical solution of differential equations on manifolds , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[27]  Robert D. Russell,et al.  Self–similar numerical solutions of the porous–medium equation using moving mesh methods , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[28]  Benedict J. Leimkuhler,et al.  Reversible Adaptive Regularization I: Perturbed Kepler Motion and Classical Atomic Trajectories , 1997 .

[29]  R. Russell,et al.  New Self-Similar Solutions of the Nonlinear Schrödinger Equation with Moving Mesh Computations , 1999 .

[30]  S. Reich Backward Error Analysis for Numerical Integrators , 1999 .

[31]  Sebastian Reich,et al.  Finite Volume Methods for Multi-Symplectic PDES , 2000 .

[32]  Benedict Leimkuhler,et al.  Scaling invariance and adaptivity , 2001 .