CHARACTERIZING THEMATIZED DERIVATIVE SCHEMA BY THE UNDERLYING EMERGENT STRUCTURES
暂无分享,去创建一个
Mercedes García | Gloria Sánchez-Matamoros | Salvador Llinares | S. Llinares | Mercedes García | Gloria Sánchez-Matamoros
[1] Ron Tzur,et al. Distinguishing Two Stages of Mathematics Conceptual Learning , 2004 .
[2] G. Goldin. A Scientific Perspective on Structured, Task-Based Interviews in Mathematics Education Research , 2000 .
[3] Willi Dorfler. Formation of Mathematical Objects as Decision Making , 2002 .
[4] E. Filloy. Piaget, J. y García, R. Psicogénesis e historia de la ciencia. México: Siglo XXI editores, 1982 , 1985 .
[5] Ed Dubinsky,et al. Advanced Mathematical Thinking , 2005 .
[6] Leslie P. Steffe,et al. Children's algorithms as schemes , 1983 .
[7] Ed Dubinsky,et al. Some Historical Issues and Paradoxes Regarding the Concept of Infinity: An Apos Analysis: Part 2 , 2005 .
[8] Eduardo Dubinsky. Aplicación de la perspectiva piagetiana a la educación matemática universitaria , 1996, Educación matemática.
[9] Markus Hähkiöniemi. Associative and Reflective Connections between the Limit of the Difference Quotient and Limiting Process. , 2006 .
[10] Ed Dubinsky,et al. Constructive Aspects of Reflective Abstraction in Advanced Mathematics , 1991 .
[11] J. Berry,et al. Promoting students’ graphical understanding of the calculus , 2003 .
[12] Ed Dubinsky,et al. The development of students' graphical understanding of the derivative , 1997 .
[13] David Tall,et al. Advanced Mathematical Thinking , 1994 .
[14] Margaret Kinzel,et al. Explicating a Mechanism for Conceptual Learning: Elaborating the Construct of Reflective Abstraction , 2004 .
[15] R. Skemp. The psychology of learning mathematics , 1979 .
[16] J. Clement. Analysis of Clinical Interviews: Foundations and model viability , 2000 .
[17] David E. Meel. Modelos y teorías de la comprensión matemática: Comparación de los modelos de Pirie y Kieren sobre el crecimiento de la comprensión matemática y la Teoría APOE , 2003 .
[18] Leslie P. Steffe,et al. Epistemological foundations of mathematical experience , 1991 .
[19] Draga Vidakovic,et al. Understanding the limit concept: Beginning with a coordinated process scheme , 1996 .
[20] Sue Johnston-Wilder,et al. Fundamental Constructs in Mathematics Education , 2004 .
[21] J. Piaget,et al. The Development of Thought: Equilibration of Cognitive Structures , 1977 .
[22] Bernadette Baker,et al. A Calculus Graphing Schema , 2000 .
[23] Michelle Zandieh,et al. The evolution of student understanding of the concept of derivative , 1997 .
[24] M. Trigueros,et al. Schema Thematization: A Framework and an Example , 2007 .
[25] G. Vergnaud. La théorie des champs conceptuels , 1989 .
[26] Jere Confrey,et al. A critique of the selection of “Mathematical objects” as a central metaphor for advanced mathematical thinking , 1996, Int. J. Comput. Math. Learn..
[27] Jean Piaget,et al. Studies in Reflecting Abstraction , 2001 .
[28] Draga Vidakovic,et al. Constructing a schema: The case of the chain rule? , 1997 .
[29] Samer Habre,et al. Students’ conceptual understanding of a function and its derivative in an experimental calculus course , 2006 .
[30] R. Lesh,et al. Handbook of Research Design in Mathematics and Science Education. , 2000 .
[31] Laurel Cooley,et al. Thematization of the Calculus Graphing Schema. , 2003 .
[32] Guershon Harel,et al. Advanced Mathematical Thinking , 2006 .
[33] Guershon Harel,et al. Advanced Mathematical-Thinking at Any Age: Its Nature and Its Development , 2005 .
[34] G. Harel,et al. ADVANCED MATHEMATICAL THINKING: SOME PME PERSPECTIVES , 2006 .
[35] Patrick W Thompson,et al. Didactic Objects and Didactic Models in Radical Constructivism , 2002 .
[36] Gloria Sánchez-Matamoros,et al. La comprensión de la derivada como objeto de investigación en didáctica de la matemática , 2008 .
[37] Ed Dubinsky,et al. Reflective Abstraction in Advanced Mathematical Thinking , 2002 .