Magnetofossils from Ancient Mars: a Robust Biosignature in the Martian Meteorite ALH84001
暂无分享,去创建一个
Joseph L. Kirschvink | Kathie L. Thomas-Keprta | David S. McKay | Hojatollah Vali | Simon J. Clemett | J. Kirschvink | D. Mckay | E. Gibson | K. Thomas-Keprta | H. Vali | C. Romanek | S. Clemett | D. Bazylinski | S. Wentworth | Susan J. Wentworth | Dennis A. Bazylinski | Everett K. Gibson, | Christopher S. Romanek
[1] A. Steele,et al. Questioning the evidence for Earth's oldest fossils , 2002, Nature.
[2] P. Feldman,et al. Detection of Molecular Hydrogen in the Atmosphere of Mars , 2001, Science.
[3] O. Eugster,et al. Ages and Geologic Histories of Martian Meteorites , 2001 .
[4] H. V. Lauer,et al. Letter. A simple inorganic process for formation of carbonates, magnetite, and sulfides in martian meteorite ALH84001 , 2001 .
[5] M. F. Mckay,et al. Truncated hexa-octahedral magnetite crystals in ALH84001: Presumptive biosignatures , 2001, Proceedings of the National Academy of Sciences of the United States of America.
[6] Carmen Ascaso,et al. Chains of magnetite crystals in the meteorite ALH84001: Evidence of biological origin , 2001, Proceedings of the National Academy of Sciences of the United States of America.
[7] Simon A. Wilde,et al. Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago , 2001, Nature.
[8] J. Kirschvink,et al. Elongated prismatic magnetite crystals in ALH84001 carbonate globules: potential Martian magnetofossils. , 2000, Geochimica et cosmochimica acta.
[9] J. W. Beck,et al. Isotopic evidence for extraterrestrial organic material in the Martian meteorite, Nakhla , 2000 .
[10] M. Malin,et al. Evidence for recent groundwater seepage and surface runoff on Mars. , 2000, Science.
[11] D. Ming,et al. An experimental study on kinetically‐driven precipitation of calcium‐magnesium‐iron carbonates from solution: Implications for the low‐temperature formation of carbonates in martian meteorite Allan Hills 84001 , 2000 .
[12] L. N. Matveeva,et al. The missing organic molecules on Mars. , 2000, Proceedings of the National Academy of Sciences of the United States of America.
[13] H. Wiesmann,et al. The age of the carbonates in martian meteorite ALH84001. , 1999, Science.
[14] Ness,et al. Magnetic lineations in the ancient crust of mars , 1999, Science.
[15] M. Malin,et al. Groundwater formation of martian valleys , 1999, Nature.
[16] M. Zuber. Planetary science: Snapshots of an ancient cover-up , 1999, Nature.
[17] S. Moorbath,et al. Early Archaean Isua supracrustal belt,West Greenland: pilot study of the Isua Multidisciplinary Research Project , 1998 .
[18] A. Treiman,et al. Bulk and stable isotopic compositions of carbonate minerals in Martian meteorite Allan Hills 84001: No proof of high formation temperature , 1998, Meteoritics & planetary science.
[19] A. Treiman. The history of Allan Hills 84001 revised: Multiple shock events , 1998, Meteoritics & planetary science.
[20] W. Bleeker,et al. Age of the World's Oldest Rocks Refined Using Canada's SHRIMP: The Acasta Gneiss Complex, Northwest Territories, Canada , 1998 .
[21] A. Treiman. The History of ALH 84001 Revised: Multiple Shock Events , 1998 .
[22] R. Frankel,et al. Magneto-aerotaxis in marine coccoid bacteria. , 1997, Biophysical journal.
[23] E. Gibson,et al. Low-Temperature Carbonate Concretions in the Martian Meteorite ALH84001: Evidence from Stable Isotopes and Mineralogy , 1997, Science.
[24] Joseph L. Kirschvink,et al. Paleomagnetic Evidence of a Low-Temperature Origin of Carbonate in the Martian Meteorite ALH84001 , 1997, Science.
[25] J. Goswami,et al. Nuclear tracks and light noble gases in Allan Hills 84001: Preatmospheric size, fall characteristics, cosmic‐ray exposure duration and formation age , 1997 .
[26] A. Navrotsky,et al. Synthesis, characterization, and enthalpy of mixing of the (Fe,Mg)C0 3 solid solution , 1996 .
[27] R. Zare,et al. Search for Past Life on Mars: Possible Relic Biogenic Activity in Martian Meteorite ALH84001 , 1996, Science.
[28] H P Klein,et al. On the search for extant life on Mars. , 1996, Icarus.
[29] C. Eastoe,et al. Isotopic composition of carbonates in the SNC meteorites Allan Hills 84001 and Nakhla , 1995 .
[30] T. Matsunaga,et al. Phylogenetic analysis of a novel sulfate-reducing magnetic bacterium, RS-1, demonstrates its membership of the delta-Proteobacteria. , 1995, FEMS microbiology letters.
[31] I. P. Wright,et al. Record of fluidrock interactions on Mars from the meteorite ALH84001 , 1994, Nature.
[32] D. Mittlefehldt,et al. ALH84001, a cumulate orthopyroxenite member of the martian meteorite clan , 1994 .
[33] J. Schopf,et al. Microfossils of the Early Archean Apex Chert: New Evidence of the Antiquity of Life , 1993, Science.
[34] Edward F. DeLong,et al. Multiple Evolutionary Origins of Magnetotaxis in Bacteria , 1993, Science.
[35] J. Gooding. Soil mineralogy and chemistry on Mars - Possible clues from salts and clays in SNC meteorites , 1992 .
[36] J. Dubrawski. Thermal decomposition of some siderite-magnesite minerals using DSC , 1991 .
[37] C. Pillinger,et al. Organic materials in a martian meteorite , 1989, Nature.
[38] J. Kirschvink,et al. Biogenic Magnetite in Stromatolites. II. Occurrence in Ancient Sedimentary Environments , 1989 .
[39] Holger W. Jannasch,et al. Anaerobic magnetite production by a marine, magnetotactic bacterium , 1988, Nature.
[40] Derek R. Lovley,et al. Anaerobic production of magnetite by a dissimilatory iron-reducing microorganism , 1987, Nature.
[41] C. Woese,et al. Bacterial evolution , 1987, Microbiological reviews.
[42] D. Jordan,et al. Species variation in the specificity of ribulose biphosphate carboxylase/oxygenase , 1981, Nature.
[43] Joseph L. Kirschvink,et al. South-Seeking Magnetic Bacteria , 1980 .
[44] J. Kirschvink,et al. South-Seeking Magnetic Bacteria: Short Communications , 1980 .
[45] R S Wolfe,et al. Magnetite in Freshwater Magnetotactic Bacteria , 1979, Science.
[46] D. R. Rushneck,et al. The search for organic substances and inorganic volatile compounds in the surface of Mars , 1977 .
[47] R. Blakemore. Magnetotactic bacteria , 1975, Science.
[48] L. Thomas‐KeprtaK,et al. ALH4001における面取り六‐八方晶系磁鉄鉱の結晶 推定的生物学的兆候 , 2001 .
[49] R. Frankel,et al. Biologically Controlled Mineralization of Magnetic Iron Minerals by Magnetotactic Bacteria , 2000 .
[50] D. Lovley. Environmental Microbe-Metal Interactions , 2000 .
[51] S. Clemett,et al. Evidence for the extraterrestrial origin of polycyclic aromatic hydrocarbons in the Martian meteorite ALH84001. , 1998, Faraday discussions.
[52] D. Bazylinski,et al. Microbial biomineralization of magnetic iron minerals: microbiology, magnetism and environmental significance , 1997 .
[53] Michael H. Carr. Water erosion on Mars and its biologic implications. , 1996, Endeavour.
[54] Michael H. Carr. Water on early Mars. , 1996, Ciba Foundation symposium.
[55] D. Hunten,et al. Aeronomy of the current Martian atmosphere. , 1992 .
[56] David A. Paige,et al. The seasonal cycle of carbon dioxide on Mars , 1992 .
[57] C. McKay,et al. The possibility of life on Mars during a water-rich past. , 1992 .
[58] Tobias Owen,et al. The composition and early history of the atmosphere of Mars , 1992 .
[59] D. Bazylinski,et al. Anaerobic Production of Single-Domain Magnetite by the Marine, Magnetotactic Bacterium, Strain MV-1 , 1991 .
[60] R. Blakemore. Magnetotactic bacteria. , 1982, Annual review of microbiology.
[61] D. Nicholls. Complexes and first-row transition elements , 1974 .