Magnetofossils from Ancient Mars: a Robust Biosignature in the Martian Meteorite ALH84001

Evidence of biogenic activity on Mars has profound scientific implications for our understanding of the origin of life on Earth and the presence and diversity of life within the Cosmos. Analysis of the Martian meteorite Allan Hills 84001 (ALH84001) revealed several lines of evidence that has led some investigators to suggest that microbial life existed on Mars approximately 4 billion years ago (45). One of the strongest lines of evidence is the presence of tens-of-nanometer-size magnetite (Fe3O4) crystals found within carbonate globules and their associated rims in the meteorite (57, 58). Approximately one-quarter of these magnetites have remarkable morphological and chemical similarities to magnetite particles produced by magnetotactic bacteria, which occur in aquatic habitats on Earth. Moreover, these types of magnetite particles are not known or expected to be produced by abiotic means either through geological processes or synthetically in the laboratory. We have therefore argued that these Martian magnetite crystals are in fact magnetofossils (57, 58). If this is true, such magnetofossils would constitute evidence of the oldest life forms known. In this respect, we note there is now considerable uncertainty concerning when the earliest terrestrial life forms existed. Until recently, results from the ~3.5-billion-year-old Apex cherts of the Warrawoona group in western Australia held this record (52), although this work is now in question (12).

[1]  A. Steele,et al.  Questioning the evidence for Earth's oldest fossils , 2002, Nature.

[2]  P. Feldman,et al.  Detection of Molecular Hydrogen in the Atmosphere of Mars , 2001, Science.

[3]  O. Eugster,et al.  Ages and Geologic Histories of Martian Meteorites , 2001 .

[4]  H. V. Lauer,et al.  Letter. A simple inorganic process for formation of carbonates, magnetite, and sulfides in martian meteorite ALH84001 , 2001 .

[5]  M. F. Mckay,et al.  Truncated hexa-octahedral magnetite crystals in ALH84001: Presumptive biosignatures , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[6]  Carmen Ascaso,et al.  Chains of magnetite crystals in the meteorite ALH84001: Evidence of biological origin , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[7]  Simon A. Wilde,et al.  Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago , 2001, Nature.

[8]  J. Kirschvink,et al.  Elongated prismatic magnetite crystals in ALH84001 carbonate globules: potential Martian magnetofossils. , 2000, Geochimica et cosmochimica acta.

[9]  J. W. Beck,et al.  Isotopic evidence for extraterrestrial organic material in the Martian meteorite, Nakhla , 2000 .

[10]  M. Malin,et al.  Evidence for recent groundwater seepage and surface runoff on Mars. , 2000, Science.

[11]  D. Ming,et al.  An experimental study on kinetically‐driven precipitation of calcium‐magnesium‐iron carbonates from solution: Implications for the low‐temperature formation of carbonates in martian meteorite Allan Hills 84001 , 2000 .

[12]  L. N. Matveeva,et al.  The missing organic molecules on Mars. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[13]  H. Wiesmann,et al.  The age of the carbonates in martian meteorite ALH84001. , 1999, Science.

[14]  Ness,et al.  Magnetic lineations in the ancient crust of mars , 1999, Science.

[15]  M. Malin,et al.  Groundwater formation of martian valleys , 1999, Nature.

[16]  M. Zuber Planetary science: Snapshots of an ancient cover-up , 1999, Nature.

[17]  S. Moorbath,et al.  Early Archaean Isua supracrustal belt,West Greenland: pilot study of the Isua Multidisciplinary Research Project , 1998 .

[18]  A. Treiman,et al.  Bulk and stable isotopic compositions of carbonate minerals in Martian meteorite Allan Hills 84001: No proof of high formation temperature , 1998, Meteoritics & planetary science.

[19]  A. Treiman The history of Allan Hills 84001 revised: Multiple shock events , 1998, Meteoritics & planetary science.

[20]  W. Bleeker,et al.  Age of the World's Oldest Rocks Refined Using Canada's SHRIMP: The Acasta Gneiss Complex, Northwest Territories, Canada , 1998 .

[21]  A. Treiman The History of ALH 84001 Revised: Multiple Shock Events , 1998 .

[22]  R. Frankel,et al.  Magneto-aerotaxis in marine coccoid bacteria. , 1997, Biophysical journal.

[23]  E. Gibson,et al.  Low-Temperature Carbonate Concretions in the Martian Meteorite ALH84001: Evidence from Stable Isotopes and Mineralogy , 1997, Science.

[24]  Joseph L. Kirschvink,et al.  Paleomagnetic Evidence of a Low-Temperature Origin of Carbonate in the Martian Meteorite ALH84001 , 1997, Science.

[25]  J. Goswami,et al.  Nuclear tracks and light noble gases in Allan Hills 84001: Preatmospheric size, fall characteristics, cosmic‐ray exposure duration and formation age , 1997 .

[26]  A. Navrotsky,et al.  Synthesis, characterization, and enthalpy of mixing of the (Fe,Mg)C0 3 solid solution , 1996 .

[27]  R. Zare,et al.  Search for Past Life on Mars: Possible Relic Biogenic Activity in Martian Meteorite ALH84001 , 1996, Science.

[28]  H P Klein,et al.  On the search for extant life on Mars. , 1996, Icarus.

[29]  C. Eastoe,et al.  Isotopic composition of carbonates in the SNC meteorites Allan Hills 84001 and Nakhla , 1995 .

[30]  T. Matsunaga,et al.  Phylogenetic analysis of a novel sulfate-reducing magnetic bacterium, RS-1, demonstrates its membership of the delta-Proteobacteria. , 1995, FEMS microbiology letters.

[31]  I. P. Wright,et al.  Record of fluid–rock interactions on Mars from the meteorite ALH84001 , 1994, Nature.

[32]  D. Mittlefehldt,et al.  ALH84001, a cumulate orthopyroxenite member of the martian meteorite clan , 1994 .

[33]  J. Schopf,et al.  Microfossils of the Early Archean Apex Chert: New Evidence of the Antiquity of Life , 1993, Science.

[34]  Edward F. DeLong,et al.  Multiple Evolutionary Origins of Magnetotaxis in Bacteria , 1993, Science.

[35]  J. Gooding Soil mineralogy and chemistry on Mars - Possible clues from salts and clays in SNC meteorites , 1992 .

[36]  J. Dubrawski Thermal decomposition of some siderite-magnesite minerals using DSC , 1991 .

[37]  C. Pillinger,et al.  Organic materials in a martian meteorite , 1989, Nature.

[38]  J. Kirschvink,et al.  Biogenic Magnetite in Stromatolites. II. Occurrence in Ancient Sedimentary Environments , 1989 .

[39]  Holger W. Jannasch,et al.  Anaerobic magnetite production by a marine, magnetotactic bacterium , 1988, Nature.

[40]  Derek R. Lovley,et al.  Anaerobic production of magnetite by a dissimilatory iron-reducing microorganism , 1987, Nature.

[41]  C. Woese,et al.  Bacterial evolution , 1987, Microbiological reviews.

[42]  D. Jordan,et al.  Species variation in the specificity of ribulose biphosphate carboxylase/oxygenase , 1981, Nature.

[43]  Joseph L. Kirschvink,et al.  South-Seeking Magnetic Bacteria , 1980 .

[44]  J. Kirschvink,et al.  South-Seeking Magnetic Bacteria: Short Communications , 1980 .

[45]  R S Wolfe,et al.  Magnetite in Freshwater Magnetotactic Bacteria , 1979, Science.

[46]  D. R. Rushneck,et al.  The search for organic substances and inorganic volatile compounds in the surface of Mars , 1977 .

[47]  R. Blakemore Magnetotactic bacteria , 1975, Science.

[48]  L. Thomas‐KeprtaK,et al.  ALH4001における面取り六‐八方晶系磁鉄鉱の結晶 推定的生物学的兆候 , 2001 .

[49]  R. Frankel,et al.  Biologically Controlled Mineralization of Magnetic Iron Minerals by Magnetotactic Bacteria , 2000 .

[50]  D. Lovley Environmental Microbe-Metal Interactions , 2000 .

[51]  S. Clemett,et al.  Evidence for the extraterrestrial origin of polycyclic aromatic hydrocarbons in the Martian meteorite ALH84001. , 1998, Faraday discussions.

[52]  D. Bazylinski,et al.  Microbial biomineralization of magnetic iron minerals: microbiology, magnetism and environmental significance , 1997 .

[53]  Michael H. Carr Water erosion on Mars and its biologic implications. , 1996, Endeavour.

[54]  Michael H. Carr Water on early Mars. , 1996, Ciba Foundation symposium.

[55]  D. Hunten,et al.  Aeronomy of the current Martian atmosphere. , 1992 .

[56]  David A. Paige,et al.  The seasonal cycle of carbon dioxide on Mars , 1992 .

[57]  C. McKay,et al.  The possibility of life on Mars during a water-rich past. , 1992 .

[58]  Tobias Owen,et al.  The composition and early history of the atmosphere of Mars , 1992 .

[59]  D. Bazylinski,et al.  Anaerobic Production of Single-Domain Magnetite by the Marine, Magnetotactic Bacterium, Strain MV-1 , 1991 .

[60]  R. Blakemore Magnetotactic bacteria. , 1982, Annual review of microbiology.

[61]  D. Nicholls Complexes and first-row transition elements , 1974 .