Long-distance quantum communication with neutral atoms

The architecture proposed by Duan, Lukin, Cirac, and Zoller (DLCZ) for entangling distant atomic ensembles is addressed and analyzed. Its performance, in terms of fidelity and throughput, is compared to that of the quantum communication architecture using trapped rubidium-atom quantum memories that has been proposed by a team from the Massachusetts Institute of Technology and Northwestern University (MIT/NU). It is shown that the DLCZ protocol for entanglement distribution achieves a better throughput versus distance behavior than does the MIT/NU architecture, with both being capable of high entanglement fidelities. The DLCZ scheme also admits to a conditional teleportation scheme based on its entangled atomic ensembles, whereas the MIT/NU architecture affords unconditional teleportation based on its trapped-atom quantum memories. It is shown that achieving unity fidelity in DLCZ teleportation requires photon-number resolving detectors; the maximum teleportation fidelity that can be realized with non-resolving detectors is 1/2.

[1]  Christian Kurtsiefer,et al.  Complete deterministic linear optics Bell state analysis. , 2006, Physical review letters.

[2]  Prem Kumar,et al.  Infrastructure for the quantum internet , 2004, CCRV.

[3]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[4]  D. Matsukevich,et al.  Entanglement of remote atomic qubits. , 2006, Physical review letters.

[5]  H. Kimble,et al.  Control of decoherence in the generation of photon pairs from atomic ensembles , 2005, quant-ph/0507127.

[6]  J. Cirac,et al.  Quantum State Transfer and Entanglement Distribution among Distant Nodes in a Quantum Network , 1996, quant-ph/9611017.

[7]  M. Shahriar,et al.  Long distance, unconditional teleportation of atomic states via complete Bell state measurements. , 2000, Physical review letters.

[8]  Mohsen Razavi Long-distance quantum communication with neutral atoms , 2005 .

[9]  Jeffrey H. Shapiro,et al.  Architectures for long-distance quantum teleportation , 2002 .

[10]  J. J. Sakurai,et al.  Modern Quantum Mechanics , 1986 .

[11]  Hot-cavity loading: A Heisenberg-Langevin analysis , 2006, 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference.

[12]  C. Gardiner,et al.  Quantum Noise: A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics , 2004 .

[13]  P. Zoller,et al.  Three-dimensional theory for interaction between atomic ensembles and free-space light , 2002 .

[14]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[15]  A. A. Zhukov,et al.  Practical realization of a quantum cryptography protocol exploiting polarization encoding in qutrits , 2003 .

[16]  Ofer Shapira,et al.  Hollow multilayer photonic bandgap fibers for NIR applications. , 2004, Optics express.

[17]  Isaac L. Chuang,et al.  Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations , 1999, Nature.

[18]  Jeffrey H. Shapiro,et al.  Optical communication with two-photon coherent states-Part III: Quantum measurements realizable with photoemissive detectors , 1980, IEEE Trans. Inf. Theory.

[19]  V. Kulakovskii,et al.  Strong coupling in a single quantum dot–semiconductor microcavity system , 2004, Nature.

[20]  F. Wong,et al.  Source of polarization entanglement in a single periodically poled KTiOPO4 crystal with overlapping emission cones. , 2005, Optics express.

[21]  W. Wootters,et al.  A single quantum cannot be cloned , 1982, Nature.

[22]  J. Mostowski,et al.  Transverse effects in stimulated Raman scattering , 1984 .

[23]  Jeffrey H. Shapiro,et al.  Single-photon Kerr nonlinearities do not help quantum computation , 2006 .

[24]  J. Shapiro,et al.  An ultrabright narrowband source of polarization-entangled photon pairs , 2000, QELS 2000.

[25]  M. Shahriar,et al.  Light-shift imbalance induced blockade of collective excitations beyond the lowest order , 2006, quant-ph/0604120.

[26]  R. Feynman Simulating physics with computers , 1999 .

[27]  H A Haus,et al.  Analytical solution to the quantum field theory of self-phase modulation with a finite response time. , 1994, Physical review letters.

[28]  Marco Fiorentino,et al.  Deterministic controlled-NOT gate for single-photon two-qubit quantum logic. , 2004, Physical review letters.

[29]  Tad Hogg,et al.  A Quantum Treatment of Public Goods Economics , 2002, Quantum Inf. Process..

[30]  Chuang,et al.  Simple quantum computer. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[31]  S. M. Dutra,et al.  Cavity quantum electrodynamics : the strange theory of light in a box , 2004 .

[32]  P Grangier,et al.  Controlled Single-Photon Emission from a Single Trapped Two-Level Atom , 2005, Science.

[33]  Teich,et al.  Quantum-mechanical lossless beam splitter: SU(2) symmetry and photon statistics. , 1989, Physical review. A, General physics.

[34]  D. D. Awschalom,et al.  Quantum information processing using quantum dot spins and cavity QED , 1999 .

[35]  D. Matsukevich,et al.  Storage and retrieval of single photons transmitted between remote quantum memories , 2005, Nature.

[36]  H. Kimble,et al.  Efficient engineering of multiatom entanglement through single-photon detections. , 2003, Physical review letters.

[37]  G. Rupper,et al.  Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity , 2004, Nature.

[38]  Gilles Brassard,et al.  Quantum Cryptography , 2005, Encyclopedia of Cryptography and Security.

[39]  Quantum phase gate operation based on nonlinear optics: Full quantum analysis , 2006, QELS 2006.

[40]  J. Cirac,et al.  IDEAL QUANTUM COMMUNICATION OVER NOISY CHANNELS : A QUANTUM OPTICAL IMPLEMENTATION , 1997, quant-ph/9702036.

[41]  D. Deutsch Quantum theory, the Church–Turing principle and the universal quantum computer , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[42]  Quantum communication and computing with atomic ensembles using a light-shift-imbalance-induced blockade , 2006, quant-ph/0604121.

[43]  Collett,et al.  Input and output in damped quantum systems: Quantum stochastic differential equations and the master equation. , 1985, Physical review. A, General physics.

[44]  Shih,et al.  New high-intensity source of polarization-entangled photon pairs. , 1995, Physical review letters.

[45]  F. Schmidt-Kaler,et al.  Deterministic quantum teleportation with atoms , 2004, Nature.

[46]  Hood,et al.  Measurement of conditional phase shifts for quantum logic. , 1995, Physical review letters.

[47]  Error models for long-distance qubit teleportation , 2003 .

[48]  Schumacher,et al.  Noncommuting mixed states cannot be broadcast. , 1995, Physical review letters.

[49]  Kimble,et al.  Quantum-state mapping between multilevel atoms and cavity light fields. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[50]  Blow,et al.  Continuum fields in quantum optics. , 1990, Physical Review A. Atomic, Molecular, and Optical Physics.

[51]  N. Lutkenhaus,et al.  Bell measurements for teleportation , 1998, quant-ph/9809063.

[52]  W. Louisell,et al.  Radiation and noise in quantum electronics , 1964 .

[53]  Hong,et al.  Measurement of subpicosecond time intervals between two photons by interference. , 1987, Physical review letters.

[54]  F. Wong,et al.  Efficient and spectrally bright source of polarization-entangled photons , 2004, quant-ph/0409162.

[55]  T. Spiller,et al.  Quantum computation by communication , 2005, quant-ph/0509202.

[56]  S. Girvin,et al.  Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation , 2004, cond-mat/0402216.

[57]  P. Knight,et al.  Multiparticle generalization of entanglement swapping , 1998 .

[58]  I. Chuang,et al.  Quantum Computation and Quantum Information: Bibliography , 2010 .

[59]  Jeffrey H. Shapiro,et al.  Continuous-time cross-phase modulation and quantum computation , 2007 .

[60]  E. Knill,et al.  Deterministic quantum teleportation of atomic qubits , 2004, Nature.

[61]  Shanhui Fan,et al.  All-optical transistor action with bistable switching in a photonic crystal cross-waveguide geometry. , 2003, Optics letters.

[62]  Bergmann,et al.  Adiabatic population transfer in a three-level system driven by delayed laser pulses. , 1989, Physical review. A, General physics.

[63]  R. G. Beausoleil,et al.  Applications of electromagnetically induced transparency to quantum information processing , 2004, quant-ph/0403028.

[64]  D. Dieks Communication by EPR devices , 1982 .

[65]  M. J. Fitch,et al.  Experimental controlled-NOT logic gate for single photons in the coincidence basis , 2003, quant-ph/0303095.

[66]  D. Matsukevich,et al.  Quantum telecommunication based on atomic cascade transitions. , 2006, Physical Review Letters.

[67]  J. Cirac,et al.  Long-distance quantum communication with atomic ensembles and linear optics , 2001, Nature.

[68]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[69]  S. Harris,et al.  Electromagnetically Induced Transparency , 1991, QELS '97., Summaries of Papers Presented at the Quantum Electronics and Laser Science Conference.