Two Mixed Finite Element Methods for Time-Fractional Diffusion Equations

Based on spatial conforming and nonconforming mixed finite element methods combined with classical L1 time stepping method, two fully-discrete approximate schemes with unconditional stability are first established for the time-fractional diffusion equation with Caputo derivative of order $$0<\alpha <1$$0<α<1. As to the conforming scheme, the spatial global superconvergence and temporal convergence order of $$O(h^2+\tau ^{2-\alpha })$$O(h2+τ2-α) for both the original variable u in $$H^1$$H1-norm and the flux $$\vec {p}=\nabla u$$p→=∇u in $$L^2$$L2-norm are derived by virtue of properties of bilinear element and interpolation postprocessing operator, where h and $$\tau $$τ are the step sizes in space and time, respectively. At the same time, the optimal convergence rates in time and space for the nonconforming scheme are also investigated by some special characters of $$\textit{EQ}_1^{\textit{rot}}$$EQ1rot nonconforming element, which manifests that convergence orders of $$O(h+\tau ^{2-\alpha })$$O(h+τ2-α) and $$O(h^2+\tau ^{2-\alpha })$$O(h2+τ2-α) for the original variable u in broken $$H^1$$H1-norm and $$L^2$$L2-norm, respectively, and approximation for the flux $$\vec {p}$$p→ converging with order $$O(h+\tau ^{2-\alpha })$$O(h+τ2-α) in $$L^2$$L2-norm. Numerical examples are provided to demonstrate the theoretical analysis.

[1]  Fawang Liu,et al.  New Solution and Analytical Techniques of the Implicit Numerical Method for the Anomalous Subdiffusion Equation , 2008, SIAM J. Numer. Anal..

[2]  Bangti Jin,et al.  An analysis of the L1 Scheme for the subdiffusion equation with nonsmooth data , 2015, 1501.00253.

[3]  Wei Chen,et al.  Approximation of an Eigenvalue Problem Associated with the Stokes Problem by the Stream Function-Vorticity-Pressure Method , 2006 .

[4]  Ricardo H. Nochetto,et al.  A PDE Approach to Space-Time Fractional Parabolic Problems , 2014, SIAM J. Numer. Anal..

[5]  Kassem Mustapha,et al.  A Discontinuous Petrov-Galerkin Method for Time-Fractional Diffusion Equations , 2014, SIAM J. Numer. Anal..

[6]  Xuan Zhao,et al.  Compact Crank–Nicolson Schemes for a Class of Fractional Cattaneo Equation in Inhomogeneous Medium , 2014, Journal of Scientific Computing.

[7]  Fawang Liu,et al.  Numerical Algorithms for Time-Fractional Subdiffusion Equation with Second-Order Accuracy , 2015, SIAM J. Sci. Comput..

[8]  Dongyang Shi,et al.  Quasi-Wilson nonconforming element approximation for nonlinear dual phase lagging heat conduction equations , 2014, Appl. Math. Comput..

[9]  Bernardo Cockburn,et al.  Uniform-in-time superconvergence of HDG methods for the heat equation , 2012, Math. Comput..

[10]  Jingtang Ma,et al.  High-order finite element methods for time-fractional partial differential equations , 2011, J. Comput. Appl. Math..

[11]  Zhi-Zhong Sun,et al.  Numerical Algorithm With High Spatial Accuracy for the Fractional Diffusion-Wave Equation With Neumann Boundary Conditions , 2013, J. Sci. Comput..

[12]  Fawang Liu,et al.  Novel Numerical Methods for Solving the Time-Space Fractional Diffusion Equation in Two Dimensions , 2011, SIAM J. Sci. Comput..

[13]  Xianjuan Li,et al.  A Space-Time Spectral Method for the Time Fractional Diffusion Equation , 2009, SIAM J. Numer. Anal..

[14]  Mingrong Cui Convergence analysis of high-order compact alternating direction implicit schemes for the two-dimensional time fractional diffusion equation , 2012, Numerical Algorithms.

[15]  Changpin Li,et al.  Numerical algorithm based on Adomian decomposition for fractional differential equations , 2009, Comput. Math. Appl..

[16]  Weihua Deng,et al.  Finite Element Method for the Space and Time Fractional Fokker-Planck Equation , 2008, SIAM J. Numer. Anal..

[17]  William McLean,et al.  Superconvergence of a Discontinuous Galerkin Method for Fractional Diffusion and Wave Equations , 2012, SIAM J. Numer. Anal..

[18]  Raytcho D. Lazarov,et al.  Error Estimates for a Semidiscrete Finite Element Method for Fractional Order Parabolic Equations , 2012, SIAM J. Numer. Anal..

[19]  Zhoushun Zheng,et al.  Discontinuous Galerkin Method for Time Fractional Diffusion Equation , 2013 .

[20]  Nasser Hassan Sweilam,et al.  CRANK-NICOLSON FINITE DIFFERENCE METHOD FOR SOLVING TIME-FRACTIONAL DIFFUSION EQUATION , 2012 .

[21]  Qun Lin,et al.  Extrapolation and superconvergence of the Steklov eigenvalue problem , 2010, Adv. Comput. Math..

[22]  Chuanju Xu,et al.  Finite difference/spectral approximations for the time-fractional diffusion equation , 2007, J. Comput. Phys..

[23]  Chao Wu,et al.  Superconvergence Analysis for Linear Tetrahedral Edge Elements , 2015, J. Sci. Comput..

[24]  Hehu Xie,et al.  Asymptotic error expansion and Richardson extrapolation of eigenvalue approximations for second order elliptic problems by the mixed finite element method , 2009 .

[25]  Jianfei Huang,et al.  Two finite difference schemes for time fractional diffusion-wave equation , 2013, Numerical Algorithms.

[26]  Ningming Nie,et al.  A second order finite difference-spectral method for space fractional diffusion equations , 2014 .

[27]  Baruch Cahlon Piecewise Polynomial Approximate Solutions of an Automatic Control Problem , 1982 .

[28]  Yinnian He,et al.  Analysis for one-dimensional time-fractional Tricomi-type equations by LDG methods , 2012, Numerical Algorithms.

[29]  Fawang Liu,et al.  An implicit RBF meshless approach for time fractional diffusion equations , 2011 .

[30]  Dongyang Shi,et al.  Superconvergence analysis of anisotropic linear triangular finite element for nonlinear Schrödinger equation , 2014, Appl. Math. Lett..

[31]  Jiye Yang,et al.  Finite difference/finite element method for two-dimensional space and time fractional Bloch-Torrey equations , 2015, J. Comput. Phys..

[32]  Jiye Yang,et al.  Galerkin finite element method for two-dimensional Riesz space fractional diffusion equations , 2014, J. Comput. Phys..

[33]  Xuan Zhao,et al.  Compact difference scheme for the fractional sub-diffusion equation with Neumann boundary conditions , 2013, J. Comput. Phys..

[34]  Shaher Momani,et al.  Generalized differential transform method for solving a space- and time-fractional diffusion-wave equation , 2007 .

[35]  Kassem Mustapha,et al.  Convergence and superconvergence analyses of HDG methods for time fractional diffusion problems , 2014, Adv. Comput. Math..

[36]  F. Mainardi,et al.  The fundamental solution of the space-time fractional diffusion equation , 2007, cond-mat/0702419.

[37]  Fawang Liu,et al.  Numerical investigation of three types of space and time fractional Bloch-Torrey equations in 2D , 2013 .

[38]  Hong Li,et al.  An $$H^1$$H1-Galerkin mixed finite element method for time fractional reaction–diffusion equation , 2015 .

[39]  Zhi-Zhong Sun,et al.  A compact finite difference scheme for the fractional sub-diffusion equations , 2011, J. Comput. Phys..

[40]  Jianfei Huang,et al.  Finite element method for two-dimensional space-fractional advection-dispersion equations , 2015, Appl. Math. Comput..

[41]  E. H. Doha,et al.  A numerical technique based on the shifted Legendre polynomials for solving the time-fractional coupled KdV equations , 2016 .

[42]  Kassem Mustapha,et al.  A hybridizable discontinuous Galerkin method for fractional diffusion problems , 2014, Numerische Mathematik.

[43]  J. Pasciak,et al.  Error analysis of semidiscrete finite element methods for inhomogeneous time-fractional diffusion , 2013, 1307.1068.

[44]  Q. Lin,et al.  Superconvergence and extrapolation of non-conforming low order finite elements applied to the Poisson equation , 2005 .

[45]  Francisco-Javier Sayas,et al.  A PROJECTION-BASED ERROR ANALYSIS OF HDG METHODS , 2010 .

[46]  Zhi‐zhong Sun,et al.  A fully discrete difference scheme for a diffusion-wave system , 2006 .

[47]  Fanhai Zeng,et al.  Second-Order Stable Finite Difference Schemes for the Time-Fractional Diffusion-Wave Equation , 2014, J. Sci. Comput..