Two Mixed Finite Element Methods for Time-Fractional Diffusion Equations
暂无分享,去创建一个
Pan Chen | Xiangtao Liu | Yanmin Zhao | Yifa Tang | Weiping Bu | Yifa Tang | W. Bu | Yanmin Zhao | Xiangtao Liu | Pan Chen
[1] Fawang Liu,et al. New Solution and Analytical Techniques of the Implicit Numerical Method for the Anomalous Subdiffusion Equation , 2008, SIAM J. Numer. Anal..
[2] Bangti Jin,et al. An analysis of the L1 Scheme for the subdiffusion equation with nonsmooth data , 2015, 1501.00253.
[3] Wei Chen,et al. Approximation of an Eigenvalue Problem Associated with the Stokes Problem by the Stream Function-Vorticity-Pressure Method , 2006 .
[4] Ricardo H. Nochetto,et al. A PDE Approach to Space-Time Fractional Parabolic Problems , 2014, SIAM J. Numer. Anal..
[5] Kassem Mustapha,et al. A Discontinuous Petrov-Galerkin Method for Time-Fractional Diffusion Equations , 2014, SIAM J. Numer. Anal..
[6] Xuan Zhao,et al. Compact Crank–Nicolson Schemes for a Class of Fractional Cattaneo Equation in Inhomogeneous Medium , 2014, Journal of Scientific Computing.
[7] Fawang Liu,et al. Numerical Algorithms for Time-Fractional Subdiffusion Equation with Second-Order Accuracy , 2015, SIAM J. Sci. Comput..
[8] Dongyang Shi,et al. Quasi-Wilson nonconforming element approximation for nonlinear dual phase lagging heat conduction equations , 2014, Appl. Math. Comput..
[9] Bernardo Cockburn,et al. Uniform-in-time superconvergence of HDG methods for the heat equation , 2012, Math. Comput..
[10] Jingtang Ma,et al. High-order finite element methods for time-fractional partial differential equations , 2011, J. Comput. Appl. Math..
[11] Zhi-Zhong Sun,et al. Numerical Algorithm With High Spatial Accuracy for the Fractional Diffusion-Wave Equation With Neumann Boundary Conditions , 2013, J. Sci. Comput..
[12] Fawang Liu,et al. Novel Numerical Methods for Solving the Time-Space Fractional Diffusion Equation in Two Dimensions , 2011, SIAM J. Sci. Comput..
[13] Xianjuan Li,et al. A Space-Time Spectral Method for the Time Fractional Diffusion Equation , 2009, SIAM J. Numer. Anal..
[14] Mingrong Cui. Convergence analysis of high-order compact alternating direction implicit schemes for the two-dimensional time fractional diffusion equation , 2012, Numerical Algorithms.
[15] Changpin Li,et al. Numerical algorithm based on Adomian decomposition for fractional differential equations , 2009, Comput. Math. Appl..
[16] Weihua Deng,et al. Finite Element Method for the Space and Time Fractional Fokker-Planck Equation , 2008, SIAM J. Numer. Anal..
[17] William McLean,et al. Superconvergence of a Discontinuous Galerkin Method for Fractional Diffusion and Wave Equations , 2012, SIAM J. Numer. Anal..
[18] Raytcho D. Lazarov,et al. Error Estimates for a Semidiscrete Finite Element Method for Fractional Order Parabolic Equations , 2012, SIAM J. Numer. Anal..
[19] Zhoushun Zheng,et al. Discontinuous Galerkin Method for Time Fractional Diffusion Equation , 2013 .
[20] Nasser Hassan Sweilam,et al. CRANK-NICOLSON FINITE DIFFERENCE METHOD FOR SOLVING TIME-FRACTIONAL DIFFUSION EQUATION , 2012 .
[21] Qun Lin,et al. Extrapolation and superconvergence of the Steklov eigenvalue problem , 2010, Adv. Comput. Math..
[22] Chuanju Xu,et al. Finite difference/spectral approximations for the time-fractional diffusion equation , 2007, J. Comput. Phys..
[23] Chao Wu,et al. Superconvergence Analysis for Linear Tetrahedral Edge Elements , 2015, J. Sci. Comput..
[24] Hehu Xie,et al. Asymptotic error expansion and Richardson extrapolation of eigenvalue approximations for second order elliptic problems by the mixed finite element method , 2009 .
[25] Jianfei Huang,et al. Two finite difference schemes for time fractional diffusion-wave equation , 2013, Numerical Algorithms.
[26] Ningming Nie,et al. A second order finite difference-spectral method for space fractional diffusion equations , 2014 .
[27] Baruch Cahlon. Piecewise Polynomial Approximate Solutions of an Automatic Control Problem , 1982 .
[28] Yinnian He,et al. Analysis for one-dimensional time-fractional Tricomi-type equations by LDG methods , 2012, Numerical Algorithms.
[29] Fawang Liu,et al. An implicit RBF meshless approach for time fractional diffusion equations , 2011 .
[30] Dongyang Shi,et al. Superconvergence analysis of anisotropic linear triangular finite element for nonlinear Schrödinger equation , 2014, Appl. Math. Lett..
[31] Jiye Yang,et al. Finite difference/finite element method for two-dimensional space and time fractional Bloch-Torrey equations , 2015, J. Comput. Phys..
[32] Jiye Yang,et al. Galerkin finite element method for two-dimensional Riesz space fractional diffusion equations , 2014, J. Comput. Phys..
[33] Xuan Zhao,et al. Compact difference scheme for the fractional sub-diffusion equation with Neumann boundary conditions , 2013, J. Comput. Phys..
[34] Shaher Momani,et al. Generalized differential transform method for solving a space- and time-fractional diffusion-wave equation , 2007 .
[35] Kassem Mustapha,et al. Convergence and superconvergence analyses of HDG methods for time fractional diffusion problems , 2014, Adv. Comput. Math..
[36] F. Mainardi,et al. The fundamental solution of the space-time fractional diffusion equation , 2007, cond-mat/0702419.
[37] Fawang Liu,et al. Numerical investigation of three types of space and time fractional Bloch-Torrey equations in 2D , 2013 .
[38] Hong Li,et al. An $$H^1$$H1-Galerkin mixed finite element method for time fractional reaction–diffusion equation , 2015 .
[39] Zhi-Zhong Sun,et al. A compact finite difference scheme for the fractional sub-diffusion equations , 2011, J. Comput. Phys..
[40] Jianfei Huang,et al. Finite element method for two-dimensional space-fractional advection-dispersion equations , 2015, Appl. Math. Comput..
[41] E. H. Doha,et al. A numerical technique based on the shifted Legendre polynomials for solving the time-fractional coupled KdV equations , 2016 .
[42] Kassem Mustapha,et al. A hybridizable discontinuous Galerkin method for fractional diffusion problems , 2014, Numerische Mathematik.
[43] J. Pasciak,et al. Error analysis of semidiscrete finite element methods for inhomogeneous time-fractional diffusion , 2013, 1307.1068.
[44] Q. Lin,et al. Superconvergence and extrapolation of non-conforming low order finite elements applied to the Poisson equation , 2005 .
[45] Francisco-Javier Sayas,et al. A PROJECTION-BASED ERROR ANALYSIS OF HDG METHODS , 2010 .
[46] Zhi‐zhong Sun,et al. A fully discrete difference scheme for a diffusion-wave system , 2006 .
[47] Fanhai Zeng,et al. Second-Order Stable Finite Difference Schemes for the Time-Fractional Diffusion-Wave Equation , 2014, J. Sci. Comput..