Extending the supercontinuum spectrum down to 200 nm with few-cycle pulses

By focusing 805 nm pulses of low energy (0.2-1 mJ) into atmospheric-pressure argon, a supercontinuum is generated with a short- wavelength cutoff of 640, 250 and 210 nm for initial pulse durations of 45, 10 and 6 fs, respectively. It is shown numerically that the large shift of the UV cutoff and many features of the spectrum are caused by terms beyond the slowly-varying- envelope approximation (SVEA). Their effect on pulse compression and filament length is also discussed.

[1]  See Leang Chin,et al.  BAND-GAP DEPENDENCE OF THE ULTRAFAST WHITE-LIGHT CONTINUUM , 1998 .

[2]  Robert R. Alfano,et al.  The Supercontinuum Laser Source , 1989 .

[3]  C. Bowden,et al.  White-light continuum generation and filamentation during the propagation of ultra-short laser pulses in air , 2001 .

[4]  E. Wright,et al.  Power dependence of dynamic spatial replenishment of femtosecond pulses propagating in air. , 1998, Optics express.

[5]  A. Zheltikov Editorial: Supercontinuum generation , 2003 .

[6]  Robert R. Alfano,et al.  Emission in the Region 4000 to 7000 Å Via Four-Photon Coupling in Glass , 1970 .

[7]  G. Mourou,et al.  Self-channeling of high-peak-power femtosecond laser pulses in air. , 1995, Optics letters.

[8]  See Leang Chin,et al.  Ultrafast white-light continuum generation and self-focusing in transparent condensed media , 1999 .

[9]  J. Wolf,et al.  Supercontinuum emission and enhanced self-guiding of infrared femtosecond filaments sustained by third-harmonic generation in air. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  A. Becker,et al.  Intensity clamping of a femtosecond laser pulse in condensed matter , 2002 .

[11]  A. Becker,et al.  Experiment and simulations on the energy reservoir effect in femtosecond light filaments. , 2005, Optics letters.

[12]  J V Moloney,et al.  Physical factors limiting the spectral extent and band gap dependence of supercontinuum generation. , 2003, Physical review letters.

[13]  H. Nishioka,et al.  Super-broadband continuum generation with transient self-focusing of a terawatt laser pulse in rare gases , 2003 .

[14]  U. Heinzmann,et al.  Sub-femtosecond X-ray pulse generation and measurement , 2002 .

[15]  J. Ripoche,et al.  Anomalous long-range propagation of femtosecond laser pulses through air: moving focus or pulse self-guiding? , 1998, Optics letters.

[16]  Gaeta Catastrophic collapse of ultrashort pulses , 2000, Physical review letters.

[17]  Jin Yu,et al.  UV–Supercontinuum generated by femtosecond pulse filamentation in air: Meter-range experiments versus numerical simulations , 2006 .

[18]  Govind P. Agrawal,et al.  Nonlinear Fiber Optics , 1989 .

[19]  F. Krausz,et al.  NONLINEAR OPTICAL PULSE PROPAGATION IN THE SINGLE-CYCLE REGIME , 1997 .

[20]  A. Becker,et al.  Continuum generation of the third-harmonic pulse generated by an intense femtosecond IR laser pulse in air , 2003 .

[21]  U. Keller,et al.  Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation , 2004 .

[22]  W. Fuß,et al.  Supercontinuum extending from > 1000 to 250 nm, generated by focusing ten-fs laser pulses at 805 nm into Ar , 2005 .

[23]  N. Aközbek,et al.  Intensity clamping and re-focusing of intense femtosecond laser pulses in nitrogen molecular gas , 2001 .

[24]  R. Holzwarth,et al.  Attosecond control of electronic processes by intense light fields , 2003, Nature.

[25]  F. Théberge,et al.  Ultrabroadband continuum generated in air (down to 230 nm) using ultrashort and intense laser pulses , 2005 .

[26]  Arnaud Couairon,et al.  Filamentation length of powerful laser pulses , 2003 .

[27]  J. Biegert,et al.  Pulse self-compression to the single-cycle limit by filamentation in a gas with a pressure gradient. , 2005, Optics letters.

[28]  A. Becker,et al.  Background reservoir: its crucial role for long-distance propagation of femtosecond laser pulses in air , 2005 .

[29]  A. M. Zheltikov Third-harmonic generation with no signal at 3ω , 2005 .

[30]  F. Théberge,et al.  The influence of divergence on the filament length during the propagation of intense ultra-short laser pulses , 2006 .

[31]  Zhiyi Wei,et al.  Third-order harmonic generation by self-guided femtosecond pulses in air. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[32]  J. Manassah Simple Models of Self-Phase and Induced-Phase Modulation , 2006 .

[33]  I. S. Golubtsov,et al.  Self-transformation of a powerful femtosecond laser pulse into a white-light laser pulse in bulk optical media (or supercontinuum generation) , 2003 .

[34]  F. Salin,et al.  Conical emission from self-guided femtosecond pulses in air. , 1996, Optics letters.

[35]  Miroslav Kolesik,et al.  OPTICALLY TURBULENT FEMTOSECOND LIGHT GUIDE IN AIR , 1999 .

[36]  Total ionization rates and ion yields of atoms at nonperturbative laser intensities , 2001 .

[37]  See Leang Chin,et al.  Long-range third-harmonic generation in air using ultrashort intense laser pulses , 2005 .

[38]  K. Ueda,et al.  Ultrabroadband flat continuum generation in multichannel propagation of terrawatt Ti:sapphire laser pulses. , 1995, Optics letters.

[39]  J. Biegert,et al.  Self-compression of ultra-short laser pulses down to one optical cycle by filamentation , 2006 .

[40]  S. Sharifi,et al.  Long-range spectrally and spatially resolved radiation from filaments in air , 2005 .

[41]  Bernard Prade,et al.  Determination of the inertial contribution to the nonlinear refractive index of air, N 2 , and O 2 by use of unfocused high-intensity femtosecond laser pulses , 1997 .

[42]  Jun Liu,et al.  Extremely short pulse compression in bulk materials: a scheme for generating few cycle intense laser pulse , 2005, SPIE LASE.

[43]  U. Kleineberg,et al.  Atomic transient recorder , 2004, Nature.

[44]  J. Biegert,et al.  Generation of intense few-cycle laser pulses through filamentation - parameter dependence. , 2005, Optics express.

[45]  S. Chin,et al.  Moving focus in the propagation of ultrashort laser pulses in air. , 1997, Optics letters.

[46]  Comment on "Self-compression of high-intensity femtosecond optical pulses and spatiotemporal soliton generation". , 2000 .

[47]  Olga G. Kosareva,et al.  The propagation of powerful femtosecond laser pulses in optical media : physics, applications, and new challenges , 2005 .

[48]  D. Gordon,et al.  Characterization of the third-harmonic radiation generated by intense laser self-formed filaments propagating in air. , 2005, Optics letters.

[49]  A. Becker,et al.  Third-harmonic generation and self-channeling in air using high-power femtosecond laser pulses. , 2002, Physical review letters.

[50]  See Leang Chin,et al.  Third harmonic beam profile generated in atmospheric air using femtosecond laser pulses , 2005 .