Robust Computer Vision

Preface Computer vision is the enterprise of automating and integrating a wide range of processes and representations used for vision perception. It includes many techniques that are useful by themselves, such as image processing (transforming, encoding, and transmitting images) and statistical pattern classification (statistical decision theory applied to general patterns, visual or otherwise). Moreover, it also includes techniques for geometric modeling and cognitive processing. The field of computer vision may be best understood by considering different types of applications. Many of these applications involve tasks that require either work in a hostile environment, a high rate of processing, access and use of large databases of information, or are tedious for people to perform. Computer vision systems are used in many and various types of environments-from manufacturing plants, to hospital surgical suits, and to the surface of Mars. For example , in manufacturing systems, computer vision is often used for quality control. In this application, the computer vision system scans manufactured items for defects and provides control signals to a robotic manipulator to remove defective parts automatically. Current examples of medical systems being developed include: systems to diagnose skin tumors automatically, systems to aid neurosurgeons during brain surgery, systems to perform clinical tests automatically, etc. The field of law enforcement and security is also an active area for computer vision system development with applications ranging from automatic identification of fingerprints to DNA analysis. In a standard approach, statistical techniques in computer vision applications must estimate accurate model parameters despite small-scale noise in the data, occasional large-scale measurement errors (outliers), and measurements from multiple populations in the same data set. Increasingly, robust estimation techniques from statistics are being used to solve these parameter estimation problems. Ideally, these techniques should effectively ignore the outliers when estimating the parameters of a single population. In our approach, we consider applications that involve similarity where the ground truth is provided. The goal is to find the probability density function which maximizes the VII VIII Preface similarity probability. Furthermore, we derive the corresponding metric from the probability density function by using the maximum likelihood paradigm and we use it in the experiments. The goal of this book is to describe and illuminate some fundamental principles of robust approaches. Consequently, the intention is to introduce basic concepts and techniques of a robust approach and to develop a foundation, which can be used in a wide variety of computer …

[1]  David J. Fleet,et al.  Performance of optical flow techniques , 1994, International Journal of Computer Vision.

[2]  D P Huijsmans,et al.  A Maximum Likelihood Investigation Into Texture Classi cation , 2000 .

[3]  Michael J. Swain,et al.  Color indexing , 1991, International Journal of Computer Vision.

[4]  Nicu Sebe,et al.  Visual websearching using iconic queries , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[5]  David G. Lowe,et al.  Three-Dimensional Object Recognition from Single Two-Dimensional Images , 1987, Artif. Intell..

[6]  A. J. Fridlund Evolution and facial action in reflex, social motive, and paralanguage , 1991, Biological Psychology.

[7]  Richard Szeliski,et al.  Tracking with Kalman snakes , 1993 .

[8]  H. Schlosberg Three dimensions of emotion. , 1954, Psychological review.

[9]  Matti Pietikäinen,et al.  A comparative study of texture measures with classification based on featured distributions , 1996, Pattern Recognit..

[10]  A. Jepson,et al.  Recovering local surface structure through local phase difference measurements , 1994 .

[11]  Terry E. Weymouth,et al.  Using Dynamic Programming For Minimizing The Energy Of Active Contours In The Presence Of Hard Constraints , 1988, [1988 Proceedings] Second International Conference on Computer Vision.

[12]  C. Jennison,et al.  Robust Statistics: The Approach Based on Influence Functions , 1987 .

[13]  Michael Leyton,et al.  Inferring Causal History from Shape , 1989, Cogn. Sci..

[14]  최우영,et al.  Stereo vision 및 응용 , 1994 .

[15]  A. J. Fridlund IS THERE UNIVERSAL RECOGNITION OF EMOTION FROM FACIAL EXPRESSION? A REVIEW OF THE CROSS-CULTURAL STUDIES , 1994 .

[16]  László Györfi,et al.  A Probabilistic Theory of Pattern Recognition , 1996, Stochastic Modelling and Applied Probability.

[17]  KanadeT.,et al.  A Stereo Matching Algorithm with an Adaptive Window , 1994 .

[18]  Arnold W. M. Smeulders,et al.  Color-based object recognition , 1997, Pattern Recognit..

[19]  J. Rissanen,et al.  Modeling By Shortest Data Description* , 1978, Autom..

[20]  Jerry L. Prince,et al.  Gradient vector flow: a new external force for snakes , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[21]  Larry Chen,et al.  Automatic Facial Expression Recognition from Video Sequences Using Temporal Information Table of Contents , 2000 .

[22]  Marcel Worring,et al.  Content-Based Image Retrieval at the End of the Early Years , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[23]  Frederic Fol Leymarie,et al.  Tracking Deformable Objects in the Plane Using an Active Contour Model , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[24]  Alex Pentland,et al.  LAFTER: a real-time face and lips tracker with facial expression recognition , 2000, Pattern Recognit..

[25]  Jia-Lin Chen,et al.  Texture classification using QMF bank-based subband decomposition , 1992, CVGIP Graph. Model. Image Process..

[26]  Roger Mohr,et al.  Epipole and fundamental matrix estimation using virtual parallax , 1995, Proceedings of IEEE International Conference on Computer Vision.

[27]  Keith Price,et al.  Anything you can do, I can do better (No you can't) , 1986, Comput. Vis. Graph. Image Process..

[28]  Hermann von Helmholtz,et al.  Treatise on Physiological Optics , 1962 .

[29]  Alex Pentland,et al.  Photobook: Content-based manipulation of image databases , 1996, International Journal of Computer Vision.

[30]  A. Tversky Features of Similarity , 1977 .

[31]  James Lee Hafner,et al.  Efficient Color Histogram Indexing for Quadratic Form Distance Functions , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[32]  C. A. HART,et al.  Manual of Photogrammetry , 1947, Nature.

[33]  Arnold W. M. Smeulders,et al.  PicToSeek: combining color and shape invariant features for image retrieval , 2000, IEEE Trans. Image Process..

[34]  Fang Liu,et al.  Real-time recognition with the entire Brodatz texture database , 1993, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[35]  M A WALLACH,et al.  On psychological similarity. , 1958, Psychological review.

[36]  B. S. Manjunath,et al.  Texture features and learning similarity , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[37]  Nicu Sebe,et al.  Wavelet-based salient points for image retrieval , 2000, Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101).

[38]  Nicu Sebe,et al.  Color-based retrieval , 2001, Pattern Recognit. Lett..

[39]  D. Owen Handbook of Mathematical Functions with Formulas , 1965 .

[40]  W. Eric L. Grimson,et al.  Computational Experiments with a Feature Based Stereo Algorithm , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[41]  Anil K. Jain,et al.  Texture Analysis , 2018, Handbook of Image Processing and Computer Vision.

[42]  Ernest M. Stokely,et al.  Surface Parametrization and Curvature Measurement of Arbitrary 3-D Objects: Five Practical Methods , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[43]  H. Akaike,et al.  Information Theory and an Extension of the Maximum Likelihood Principle , 1973 .

[44]  Nicu Sebe,et al.  Which ranking metric is optimal? With applications in image retrieval and stereo matching , 1998, Proceedings. Fourteenth International Conference on Pattern Recognition (Cat. No.98EX170).

[45]  Jake K. Aggarwal,et al.  Structure from stereo-a review , 1989, IEEE Trans. Syst. Man Cybern..

[46]  B. Ripley,et al.  Robust Statistics , 2018, Encyclopedia of Mathematical Geosciences.

[47]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[48]  María G. Cisneros-Solís,et al.  MEDICAL ANNUAL , 1958, Journal of The Royal Naval Medical Service.

[49]  Lawrence R. Rabiner,et al.  A tutorial on hidden Markov models and selected applications in speech recognition , 1989, Proc. IEEE.

[50]  Jitendra Malik,et al.  A Computational Framework for Determining Stereo Correspondence from a Set of Linear Spatial Filters , 1991, ECCV.

[51]  G. S. Watson,et al.  On Chi‐Square Goodness‐Of‐Fit Tests for Continuous Distributions , 1958 .

[52]  I. G. BONNER CLAPPISON Editor , 1960, The Electric Power Engineering Handbook - Five Volume Set.

[53]  M. R. Turner,et al.  Texture discrimination by Gabor functions , 1986, Biological Cybernetics.

[54]  Rosalind W. Picard,et al.  Texture orientation for sorting photos "at a glance" , 1994, Proceedings of 12th International Conference on Pattern Recognition.

[55]  Vladimir Pavlovic,et al.  Audio-visual speaker detection using dynamic Bayesian networks , 2000, Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition (Cat. No. PR00580).

[56]  C. Izard Innate and universal facial expressions: evidence from developmental and cross-cultural research. , 1994, Psychological bulletin.

[57]  John P. Oakley,et al.  Storage and Retrieval for Image and Video Databases , 1993 .

[58]  Maja Pantic,et al.  Automatic Analysis of Facial Expressions: The State of the Art , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[59]  Dan Roth,et al.  Understanding Probabilistic Classifiers , 2001, ECML.

[60]  Nicu Sebe,et al.  Facial expression recognition from video sequences , 2002, Proceedings. IEEE International Conference on Multimedia and Expo.

[61]  Nicu Sebe,et al.  Color based retrieval and recognition , 2000, 2000 IEEE International Conference on Multimedia and Expo. ICME2000. Proceedings. Latest Advances in the Fast Changing World of Multimedia (Cat. No.00TH8532).

[62]  Michael S. Landy,et al.  Computational Issues in Solving the Stereo Correspondence ProblemComputational Issues in Solving the Stereo Correspondence Problem , 1991 .

[63]  Saied Moezzi,et al.  Dynamic stereo vision , 1992 .

[64]  Martin A. Fischler,et al.  Computational Stereo , 1982, CSUR.

[65]  Andri Ariste,et al.  Pattern analysis and understanding , 1990 .

[66]  Nirupam Sarkar,et al.  Improved fractal geometry based texture segmentation technique , 1993 .

[67]  S. Marshall,et al.  Review of shape coding techniques , 1989, Image Vis. Comput..

[68]  Nicu Sebe,et al.  Texture Features for Content-Based Retrieval , 2001, Principles of Visual Information Retrieval.

[69]  T. Sanger,et al.  Stereo disparity computation using Gabor filters , 1988, Biological Cybernetics.

[70]  Jerry L Prince,et al.  Stochastic models for DIV-CURL optical flow methods , 1996, IEEE Signal Processing Letters.

[71]  Shree K. Nayar,et al.  Ordinal Measures for Image Correspondence , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[72]  Linda G. Shapiro,et al.  Efficient image retrieval with multiple distance measures , 1997, Electronic Imaging.

[73]  Simone Santini,et al.  In search of information in visual media , 1997, CACM.

[74]  Takeo Kanade,et al.  A Stereo Matching Algorithm with an Adaptive Window: Theory and Experiment , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[75]  Biing-Hwang Juang,et al.  Fundamentals of speech recognition , 1993, Prentice Hall signal processing series.

[76]  David H. Krantz,et al.  The dimensional representation and the metric structure of similarity data , 1970 .

[77]  Laurent D. Cohen,et al.  Finite-Element Methods for Active Contour Models and Balloons for 2-D and 3-D Images , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[78]  Radu Horaud,et al.  On the geometric interpretation of image contours , 1989 .

[79]  Laurent D. Cohen,et al.  On active contour models and balloons , 1991, CVGIP Image Underst..

[80]  Dragutin Petkovic,et al.  Query by Image and Video Content: The QBIC System , 1995, Computer.

[81]  Harpreet Sawhney,et al.  Efficient color histogram indexing , 1994, Proceedings of 1st International Conference on Image Processing.

[82]  Larry S. Davis,et al.  Recognizing Human Facial Expressions From Long Image Sequences Using Optical Flow , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[83]  P. Lang The emotion probe. Studies of motivation and attention. , 1995, The American psychologist.

[84]  L. Vistnes The Artist??s Complete Guide to Facial Expression , 1992 .

[85]  Benjamin B. Kimia,et al.  Image segmentation by reaction-diffusion bubbles , 1995, Proceedings of IEEE International Conference on Computer Vision.

[86]  D Marr,et al.  Early processing of visual information. , 1976, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[87]  B. Dundas,et al.  DIFFERENTIAL TOPOLOGY , 2002 .

[88]  Lawrence S. Chen,et al.  Joint processing of audio-visual information for the recognition of emotional expressions in human-computer interaction , 2000 .

[89]  E. Capaldi,et al.  The organization of behavior. , 1992, Journal of applied behavior analysis.

[90]  S. Chipman The Remembered Present: A Biological Theory of Consciousness , 1990, Journal of Cognitive Neuroscience.

[91]  Thomas S. Huang,et al.  Connected vibrations: a modal analysis approach for non-rigid motion tracking , 1998, Proceedings. 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No.98CB36231).

[92]  Jitendra Malik,et al.  Computational framework for determining stereo correspondence from a set of linear spatial filters , 1992, Image Vis. Comput..

[93]  D Marr,et al.  Theory of edge detection , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[94]  Jun Ohya,et al.  Recognizing multiple persons' facial expressions using HMM based on automatic extraction of significant frames from image sequences , 1997, Proceedings of International Conference on Image Processing.

[95]  Bin Zhu,et al.  A Collection of Visual Thesauri for Browsing Large Collections of Geographic Images , 1999, J. Am. Soc. Inf. Sci..

[96]  Thomas S. Huang,et al.  Analysis-based facial expression synthesis , 1994, Proceedings of 1st International Conference on Image Processing.

[97]  Ingemar J. Cox,et al.  An Analysis of Camera Noise , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[98]  B. Julesz Dialogues on Perception , 1994 .

[99]  L. Cohen,et al.  Multi-resolution algorithms for active contour models , 1996 .

[100]  D CohenLaurent On active contour models and balloons , 1991 .

[101]  B. S. Manjunath,et al.  A Texture Thesaurus for Browsing Large Aerial Photographs , 1998, J. Am. Soc. Inf. Sci..

[102]  Toshikazu Kato,et al.  Database architecture for content-based image retrieval , 1992, Electronic Imaging.

[103]  James J. Little,et al.  Direct evidence for occlusion in stereo and motion , 1990, Image Vis. Comput..

[104]  Alex Pentland,et al.  Modal Matching for Correspondence and Recognition , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[105]  Michael Stonebraker,et al.  Chabot: Retrieval from a Relational Database of Images , 1995, Computer.

[106]  J.G. Daugman,et al.  Entropy reduction and decorrelation in visual coding by oriented neural receptive fields , 1989, IEEE Transactions on Biomedical Engineering.

[107]  G. Wyszecki,et al.  Color Science Concepts and Methods , 1982 .

[108]  RussLL L. Ds Vnlos,et al.  SPATIAL FREQUENCY SELECTIVITY OF CELLS IN MACAQUE VISUAL CORTEX , 2022 .

[109]  J. E. Yukich,et al.  Optimal matching and empirical measures , 1989 .

[110]  Monson H. Hayes,et al.  Face Recognition Using An Embedded HMM , 1999 .

[111]  Jacob Beck,et al.  Spatial frequency channels and perceptual grouping in texture segregation , 1987, Comput. Vis. Graph. Image Process..

[112]  B. Julesz,et al.  On perceptual analyzers underlying visual texture discrimination: Part I , 2004, Biological Cybernetics.

[113]  T. Kailath The Divergence and Bhattacharyya Distance Measures in Signal Selection , 1967 .

[114]  Bela Julesz,et al.  A theory of preattentive texture discrimination based on first-order statistics of textons , 2004, Biological Cybernetics.

[115]  E. Vesterinen,et al.  Affective Computing , 2009, Encyclopedia of Biometrics.

[116]  Y. Aloimonos,et al.  Visual shape computation , 1988, Proc. IEEE.

[117]  J. M. Hans du Buf,et al.  A review of recent texture segmentation and feature extraction techniques , 1993 .

[118]  J. William Ahwood,et al.  CLASSIFICATION , 1931, Foundations of Familiar Language.

[119]  W. Richards,et al.  Texture matching , 2004, Kybernetik.

[120]  Wilson S. Geisler,et al.  Texture segmentation using Gabor modulation/demodulation , 1987, Pattern Recognit. Lett..

[121]  Larry S. Davis,et al.  Understanding Shape: Angles and Sides , 1977, IEEE Transactions on Computers.

[122]  N. Sebe,et al.  Color indexing using wavelet-based salient points , 2000, 2000 Proceedings Workshop on Content-based Access of Image and Video Libraries.

[123]  Narendra Ahuja,et al.  Surfaces from Stereo: Integrating Feature Matching, Disparity Estimation, and Contour Detection , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[124]  Richie Khandelwal,et al.  PATTERNS IN NATURE , 2005 .

[125]  B Julesz,et al.  Inability of Humans to Discriminate between Visual Textures That Agree in Second-Order Statistics—Revisited , 1973, Perception.

[126]  W. B.,et al.  The Calculus of Observations: a Treatise on Numerical Mathematics , 1924, Nature.

[127]  Hiroshi Murase,et al.  Visual learning and recognition of 3-d objects from appearance , 2005, International Journal of Computer Vision.

[128]  Marian Stewart Bartlett,et al.  Classifying Facial Actions , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[129]  Nir Friedman,et al.  Bayesian Network Classifiers , 1997, Machine Learning.

[130]  Tadasu Oyama,et al.  Visual Space Perception , 1962 .

[131]  B. Julesz Textons, the elements of texture perception, and their interactions , 1981, Nature.

[132]  R. Green Outlier-prone and outlier-resistant distributions , 1976 .

[133]  Matti Pietikäinen,et al.  Texture classification by center-symmetric auto-correlation, using Kullback discrimination of distributions , 1995, Pattern Recognit. Lett..

[134]  Nuno Vasconcelos,et al.  A unifying view of image similarity , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[135]  Nicu Sebe,et al.  Multi-scale sub-image search , 1999, MULTIMEDIA '99.

[136]  Tzay Y. Young,et al.  Classification, Estimation and Pattern Recognition , 1974 .

[137]  Nicu Sebe,et al.  Facial expression recognition from video sequences: temporal and static modeling , 2003, Comput. Vis. Image Underst..

[138]  Alexander H. Waibel,et al.  Improving connected letter recognition by lipreading , 1993, 1993 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[139]  C. N. Liu,et al.  Approximating discrete probability distributions with dependence trees , 1968, IEEE Trans. Inf. Theory.

[140]  Alvy Ray Smith,et al.  Color gamut transform pairs , 1978, SIGGRAPH.

[141]  Emanuele Trucco,et al.  Efficient stereo with multiple windowing , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[142]  Markus A. Stricker,et al.  Similarity of color images , 1995, Electronic Imaging.

[143]  Shih-Fu Chang,et al.  VisualSEEk: a fully automated content-based image query system , 1997, MULTIMEDIA '96.

[144]  David G. Lowe,et al.  Perceptual Organization and Visual Recognition , 2012 .

[145]  Demetri Terzopoulos,et al.  Deformable models , 2000, The Visual Computer.

[146]  Kenji Mase,et al.  Recognition of Facial Expression from Optical Flow , 1991 .

[147]  D Marr,et al.  A computational theory of human stereo vision. , 1979, Proceedings of the Royal Society of London. Series B, Biological sciences.

[148]  Robert M. Haralick,et al.  Textural Features for Image Classification , 1973, IEEE Trans. Syst. Man Cybern..

[149]  J. Koenderink The structure of images , 2004, Biological Cybernetics.

[150]  Ping-Sing Tsai,et al.  Shape from Shading: A Survey , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[151]  Wilson S. Geisler,et al.  Multichannel Texture Analysis Using Localized Spatial Filters , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[152]  Mubarak Shah,et al.  A Fast algorithm for active contours and curvature estimation , 1992, CVGIP Image Underst..

[153]  L. R. Rabiner,et al.  An introduction to the application of the theory of probabilistic functions of a Markov process to automatic speech recognition , 1983, The Bell System Technical Journal.

[154]  J. Daugman Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[155]  Peter J. Rousseeuw,et al.  Robust regression and outlier detection , 1987 .

[156]  Ramesh Jain,et al.  Storage and Retrieval for Image and Video Databases III , 1995 .

[157]  Kazufumi Kaneda,et al.  Dynamic contour: A texture approach and contour operations , 1995, The Visual Computer.

[158]  Fang Liu,et al.  Periodicity, Directionality, and Randomness: Wold Features for Image Modeling and Retrieval , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[159]  J. Cacioppo,et al.  Inferring psychological significance from physiological signals. , 1990, The American psychologist.

[160]  Alberto Del Bimbo,et al.  Visual information retrieval , 1999 .

[161]  Robert M. Boynton,et al.  Human Color Perception , 1990 .

[162]  Jake K. Aggarwal,et al.  On the computation of motion from sequences of images-A review , 1988, Proc. IEEE.

[163]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[164]  Michael J. Black,et al.  Tracking and recognizing rigid and non-rigid facial motions using local parametric models of image motion , 1995, Proceedings of IEEE International Conference on Computer Vision.

[165]  Yoshiaki Shirai,et al.  Three-Dimensional Computer Vision , 1987, Symbolic Computation.

[166]  Anil K. Jain,et al.  Image retrieval using color and shape , 1996, Pattern Recognit..

[167]  D. Rutter,et al.  The Role of Visual Communication in Social Exchange , 1976 .

[168]  Jitendra Malik,et al.  Computing Local Surface Orientation and Shape from Texture for Curved Surfaces , 1997, International Journal of Computer Vision.

[169]  W. Rey Introduction to Robust and Quasi-Robust Statistical Methods , 1983 .

[170]  Ingemar J. Cox,et al.  A Maximum Likelihood Stereo Algorithm , 1996, Comput. Vis. Image Underst..

[171]  Alex Pentland,et al.  Perceptual Organization and the Representation of Natural Form , 1986, Artif. Intell..

[172]  Susan S. Chen,et al.  Shape from Fractal Geometry , 1990, Artif. Intell..

[173]  B Julesz,et al.  Experiments in the visual perception of texture. , 1975, Scientific American.

[174]  P. Meer,et al.  Retrieval performance improvement through low rank corrections , 1999, Proceedings IEEE Workshop on Content-Based Access of Image and Video Libraries (CBAIVL'99).

[175]  Michael J. Black Robust incremental optical flow , 1992 .

[176]  Shih-Fu Chang,et al.  Transform features for texture classification and discrimination in large image databases , 1994, Proceedings of 1st International Conference on Image Processing.

[177]  S. Demleitner [Communication without words]. , 1997, Pflege aktuell.

[178]  Timothy F. Cootes,et al.  A unified approach to coding and interpreting face images , 1995, Proceedings of IEEE International Conference on Computer Vision.

[179]  Shigeo Morishima,et al.  Expression analysis/synthesis system based on emotion space constructed by multilayered neural network , 1994 .

[180]  Alex Pentland,et al.  Fractal-Based Description of Natural Scenes , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[181]  W. R. Buckland,et al.  A dictionary of statistical terms , 1958 .

[182]  Ming-Kuei Hu,et al.  Visual pattern recognition by moment invariants , 1962, IRE Trans. Inf. Theory.

[183]  B. S. Manjunath,et al.  A comparison of wavelet transform features for texture image annotation , 1995, Proceedings., International Conference on Image Processing.

[184]  Michael Leyton,et al.  Symmetry-curvature duality , 1987, Comput. Vis. Graph. Image Process..

[185]  Martin A. Fischler,et al.  Locating Perceptually Salient Points on Planar Curves , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[186]  Anil K. Jain Fundamentals of Digital Image Processing , 2018, Control of Color Imaging Systems.

[187]  Vijay V. Raghavan,et al.  Design and evaluation of algorithms for image retrieval by spatial similarity , 1995, TOIS.

[188]  Nicu Sebe,et al.  Toward Improved Ranking Metrics , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[189]  G. Box NON-NORMALITY AND TESTS ON VARIANCES , 1953 .

[190]  H. Maitre,et al.  Using surface model to correct and fit disparity data in stereo vision , 1990, [1990] Proceedings. 10th International Conference on Pattern Recognition.

[191]  Alberto Del Bimbo,et al.  Visual Image Retrieval by Elastic Matching of User Sketches , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[192]  Alex Pentland,et al.  Coding, Analysis, Interpretation, and Recognition of Facial Expressions , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[193]  Eberhard Gülch Results of test on image matching of ISPRS WG III/4 , 1991 .

[194]  R. Haber,et al.  Visual Perception , 2018, Encyclopedia of Database Systems.

[195]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.

[196]  Refractor Vision , 2000, The Lancet.

[197]  D.J. Granrath,et al.  The role of human visual models in image processing , 1981, Proceedings of the IEEE.

[198]  B. Julesz,et al.  On perceptual analyzers underlying visual texture discrimination: Part II , 1978, Biological Cybernetics.

[199]  Donald D. Hoffman,et al.  Parts of recognition , 1984, Cognition.

[200]  M.,et al.  Statistical and Structural Approaches to Texture , 2022 .

[201]  E. Adelson,et al.  Early vision and texture perception , 1988, Nature.

[202]  A. Madansky Identification of Outliers , 1988 .

[203]  Nicu Sebe,et al.  Robust color indexing , 1999, MULTIMEDIA '99.

[204]  Mark W. Maimone,et al.  Characterizing Stereo Matching Problems using Local Spatial Frequency , 1996 .

[205]  Thomas S. Huang,et al.  Learning and Feature Selection in Stereo Matching , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[206]  H. Damasio,et al.  IEEE Transactions on Pattern Analysis and Machine Intelligence: Special Issue on Perceptual Organization in Computer Vision , 1998 .

[207]  Tom Minka,et al.  Vision texture for annotation , 1995, Multimedia Systems.

[208]  Kim L. Boyer,et al.  Robust Contour Decomposition Using a Constant Curvature Criterion , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[209]  Patrick M. Kelly,et al.  Efficiency issues related to probability density function comparison , 1996, Electronic Imaging.

[210]  P. Ekman Emotion in the human face , 1982 .

[211]  Michael S. Lew,et al.  2D Pixel Trigrams for Content-Based Image Retrieval , 1998, Image Databases and Multi-Media Search.

[212]  J. Cohen,et al.  Color Science: Concepts and Methods, Quantitative Data and Formulas , 1968 .

[213]  Takeo Kanade,et al.  Comprehensive database for facial expression analysis , 2000, Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition (Cat. No. PR00580).

[214]  Markus A. Stricker,et al.  Spectral covariance and fuzzy regions for image indexing , 1997, Machine Vision and Applications.

[215]  Thomas S. Huang,et al.  Explanation-based facial motion tracking using a piecewise Bezier volume deformation model , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[216]  R. Hetherington The Perception of the Visual World , 1952 .

[217]  D. Spalding The Principles of Psychology , 1873, Nature.

[218]  Nicu Sebe,et al.  Improving visual matching , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[219]  J. Pokorny Foundations of Cyclopean Perception , 1972 .

[220]  P. Ekman,et al.  Strong evidence for universals in facial expressions: a reply to Russell's mistaken critique. , 1994, Psychological bulletin.

[221]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.

[222]  Sven Loncaric,et al.  A survey of shape analysis techniques , 1998, Pattern Recognit..

[223]  J. Lien,et al.  Automatic recognition of facial expressions using hidden markov models and estimation of expression intensity , 1998 .

[224]  J. Robson,et al.  Application of fourier analysis to the visibility of gratings , 1968, The Journal of physiology.

[225]  Masatsugu Kidode,et al.  An iterative prediction and correction method for automatic stereocomparison , 1973, Comput. Graph. Image Process..

[226]  Hideyuki Tamura,et al.  Textural Features Corresponding to Visual Perception , 1978, IEEE Transactions on Systems, Man, and Cybernetics.

[227]  J. J. Koenderink,et al.  Dynamic shape , 1986, Biological Cybernetics.

[228]  Richard C. Dubes,et al.  Performance evaluation for four classes of textural features , 1992, Pattern Recognit..

[229]  Michael Unser,et al.  Sum and Difference Histograms for Texture Classification , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[230]  Demetri Terzopoulos,et al.  A dynamic finite element surface model for segmentation and tracking in multidimensional medical images with application to cardiac 4D image analysis. , 1995, Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society.

[231]  Michael Lindenbaum,et al.  Curve Segmentation Under Partial Occlusion , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[232]  Alex Pentland,et al.  LAFTER: lips and face real time tracker , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[233]  C. Darwin The Expression of the Emotions in Man and Animals , .

[234]  J F FULTON,et al.  Yale University , 1951, British medical journal.

[235]  Emanuele Trucco,et al.  Symmetric Stereo with Multiple Windowing , 2000, Int. J. Pattern Recognit. Artif. Intell..

[236]  You Can Do,et al.  Anything you can do... , 2003, Nature.

[237]  Larry S. Davis,et al.  Human expression recognition from motion using a radial basis function network architecture , 1996, IEEE Trans. Neural Networks.

[238]  K. Oatley,et al.  Human emotions : a reader , 1998 .

[239]  Tomaso Poggio,et al.  Computing texture boundaries from images , 1988, Nature.

[240]  F. Attneave Some informational aspects of visual perception. , 1954, Psychological review.

[241]  Nicu Sebe,et al.  Wavelet based texture classification , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[242]  A. Martinez,et al.  Face image retrieval using HMMs , 1999, Proceedings IEEE Workshop on Content-Based Access of Image and Video Libraries (CBAIVL'99).

[243]  Nicu Sebe,et al.  Emotion recognition using a Cauchy Naive Bayes classifier , 2002, Object recognition supported by user interaction for service robots.