The Reacquisition of Biotin Prototrophy in Saccharomyces cerevisiae Involved Horizontal Gene Transfer, Gene Duplication and Gene Clustering

The synthesis of biotin, a vitamin required for many carboxylation reactions, is a variable trait in Saccharomyces cerevisiae. Many S. cerevisiae strains, including common laboratory strains, contain only a partial biotin synthesis pathway. We here report the identification of the first step necessary for the biotin synthesis pathway in S. cerevisiae. The biotin auxotroph strain S288c was able to grow on media lacking biotin when BIO1 and the known biotin synthesis gene BIO6 were introduced together on a plasmid vector. BIO1 is a paralog of YJR154W, a gene of unknown function and adjacent to BIO6. The nature of BIO1 illuminates the remarkable evolutionary history of the biotin biosynthesis pathway in S. cerevisiae. This pathway appears to have been lost in an ancestor of S. cerevisiae and subsequently rebuilt by a combination of horizontal gene transfer and gene duplication followed by neofunctionalization. Unusually, for S. cerevisiae, most of the genes required for biotin synthesis in S. cerevisiae are grouped in two subtelomeric gene clusters. The BIO1–BIO6 functional cluster is an example of a cluster of genes of “dispensable function,” one of the few categories of genes in S. cerevisiae that are positionally clustered.

[1]  Dr. Susumu Ohno Evolution by Gene Duplication , 1970, Springer Berlin Heidelberg.

[2]  S. Teichmann,et al.  Genes Encoding Subunits of Stable Complexes Are Clustered on the Yeast Chromosomes , 2004, Genetics.

[3]  H. Yoshikawa,et al.  Molecular cloning and characterization of an ML-236B (compactin) biosynthetic gene cluster in Penicillium citrinum , 2002, Molecular Genetics and Genomics.

[4]  B. Scott,et al.  Indole-Diterpene Gene Cluster from Aspergillus flavus , 2004, Applied and Environmental Microbiology.

[5]  P. Philippsen,et al.  The Ashbya gossypii Genome as a Tool for Mapping the Ancient Saccharomyces cerevisiae Genome , 2004, Science.

[6]  C. Ball,et al.  Genetic and physical maps of Saccharomyces cerevisiae. , 1997, Nature.

[7]  N. Keller,et al.  Analysis of a mycotoxin gene cluster in Aspergillus nidulans. , 1995, SAAS bulletin, biochemistry and biotechnology.

[8]  G. Spangenberg,et al.  A complex gene cluster for indole-diterpene biosynthesis in the grass endophyte Neotyphodium lolii. , 2006, Fungal genetics and biology : FG & B.

[9]  V. Phalip,et al.  Characterization of the biotin biosynthesis pathway in Saccharomyces cerevisiae and evidence for a cluster containing BIO5, a novel gene involved in vitamer uptake. , 1999, Gene.

[10]  M. Kajiwara,et al.  Origin of the carbon atoms of biotin , 1994 .

[11]  M. Kajiwara,et al.  Origin of carbon atoms of biotin. 13C-NMR studies on biotin biosynthesis in Escherichia coli. , 1994, European journal of biochemistry.

[12]  K. Mullis,et al.  Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. , 1986, Cold Spring Harbor symposia on quantitative biology.

[13]  J. Boeke,et al.  Designer deletion strains derived from Saccharomyces cerevisiae S288C: A useful set of strains and plasmids for PCR‐mediated gene disruption and other applications , 1998, Yeast.

[14]  E. Farries,et al.  On the Metabolism of Nematospora gossypii and Related Fungi, with Special Reference to the Source of Nitrogen , 1930 .

[15]  Sarah Calvo,et al.  Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis , 2006, Nature.

[16]  J. Mccusker,et al.  Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae , 1999, Yeast.

[17]  P. Philippsen,et al.  New heterologous modules for classical or PCR‐based gene disruptions in Saccharomyces cerevisiae , 1994, Yeast.

[18]  F. Tanner The "Bios" Question. , 1925 .

[19]  P. Tudzynski,et al.  Evidence for an ergot alkaloid gene cluster in Claviceps purpurea , 1999, Molecular and General Genetics MGG.

[20]  J. Liebig Ueber die Gährung und die Quelle der Muskelkraft , 1870 .

[21]  H. W. Buston,et al.  The accessory factor necessary for the growth of Nematospora gossypii: The relation of the accessory factor to "bios.". , 1931, The Biochemical journal.

[22]  G. Gonnet,et al.  Exhaustive matching of the entire protein sequence database. , 1992, Science.

[23]  S. Ehrlich,et al.  Cloning and characterization of the Bacillus subtilis birA gene encoding a repressor of the biotin operon , 1995, Journal of bacteriology.

[24]  Kiyoshi Ito,et al.  Identification and Characterization of a Novel Biotin Biosynthesis Gene in Saccharomyces cerevisiae , 2005, Applied and Environmental Microbiology.

[25]  J. Martín,et al.  Organization of the Gene Cluster for Biosynthesis of Penicillin in Penicillium nalgiovense and Antibiotic Production in Cured Dry Sausages , 1999, Applied and Environmental Microbiology.

[26]  W. Streit,et al.  Biotin in microbes, the genes involved in its biosynthesis, its biochemical role and perspectives for biotechnological production , 2003, Applied Microbiology and Biotechnology.

[27]  J. Thompson,et al.  The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. , 1997, Nucleic acids research.

[28]  R. S. Muir,et al.  Gene disruption with PCR products in Saccharomyces cerevisiae. , 1995, Gene.

[29]  J. Brune,et al.  Structural features in a brittle–ductile wax model of continental extension , 1997, nature.

[30]  S. Ravanel,et al.  Biotin Synthesis in Plants. The First Committed Step of the Pathway Is Catalyzed by a Cytosolic 7-Keto-8-Aminopelargonic Acid Synthase , 2005, Plant Physiology.

[31]  E. Schweizer,et al.  Pleiotropic phenotype of acetyl-CoA-carboxylase-defective yeast cells--viability of a BPL1-amber mutation depending on its readthrough by normal tRNA(Gln)(CAG). , 1998, European journal of biochemistry.

[32]  David J. Smith,et al.  Cloning and Heterologous Expression of the Penicillin Biosynthetic Gene Cluster from Penicillium chrysogenum , 1990, Bio/Technology.

[33]  J. Martín,et al.  Production of Penicillin by Fungi Growing on Food Products: Identification of a Complete Penicillin Gene Cluster in Penicillium griseofulvum and a Truncated Cluster in Penicillium verrucosum , 2002, Applied and Environmental Microbiology.

[34]  K. H. Wolfe,et al.  Molecular evidence for an ancient duplication of the entire yeast genome , 1997, Nature.

[35]  G. Church,et al.  A computational analysis of whole-genome expression data reveals chromosomal domains of gene expression , 2000, Nature Genetics.

[36]  N. Saitou,et al.  The neighbor-joining method: a new method for reconstructing phylogenetic trees. , 1987, Molecular biology and evolution.

[37]  G. Fink,et al.  Methods in yeast genetics , 1979 .

[38]  H J Muller,et al.  BAR DUPLICATION. , 1936, Science.

[39]  Sophie Brachat,et al.  Contribution of Horizontal Gene Transfer to the Evolution of Saccharomyces cerevisiae , 2005, Eukaryotic Cell.

[40]  K. H. Wolfe,et al.  Extent of genomic rearrangement after genome duplication in yeast. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[41]  Simon Wong,et al.  Birth of a metabolic gene cluster in yeast by adaptive gene relocation , 2005, Nature Genetics.

[42]  N. Sauer,et al.  Identification of the Plasma Membrane H+-Biotin Symporter of Saccharomyces cerevisiae by Rescue of a Fatty Acid-auxotrophic Mutant* , 1999, The Journal of Biological Chemistry.

[43]  H. W. Buston,et al.  The accessory factor necessary for the growth of Nematospora gossypii: The chemical nature of the accessory factor. , 1931, The Biochemical journal.

[44]  J. Strathern,et al.  Methods in yeast genetics : a Cold Spring Harbor Laboratory course manual , 2005 .

[45]  M. Ohsugi,et al.  Microbiological activity of biotin-vitamers. , 1985, Journal of nutritional science and vitaminology.

[46]  T. Yoshida,et al.  ε-Poly-l-lysine: microbial production, biodegradation and application potential , 2003, Applied Microbiology and Biotechnology.

[47]  E. Sonnhammer,et al.  Genomic gene clustering analysis of pathways in eukaryotes. , 2003, Genome research.

[48]  F. Kögl.,et al.  Über das Bios-Problem. Darstellung von krystallisiertem Biotin aus Eigelb. 20. Mitteilung über pflanzliche Wachstumsstoffe , 1936 .

[49]  Kiyoko F. Aoki-Kinoshita,et al.  From genomics to chemical genomics: new developments in KEGG , 2005, Nucleic Acids Res..

[50]  A. Rich,et al.  The gene for biotin synthase from Saccharomyces cerevisiae: cloning, sequencing, and complementation of Escherichia coli strains lacking biotin synthase. , 1994, Archives of biochemistry and biophysics.

[51]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[52]  J. Haldane,et al.  The Part Played by Recurrent Mutation in Evolution , 1933, The American Naturalist.

[53]  John E. Linz,et al.  Physical and transcriptional map of an aflatoxin gene cluster in Aspergillus parasiticus and functional disruption of a gene involved early in the aflatoxin pathway , 1995, Applied and environmental microbiology.

[54]  E. Schweizer,et al.  Fatty acid-requiring mutant of Saccharomyces cerevisiae defective in acetyl-CoA carboxylase. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[55]  J. Sprague,et al.  THIOUREA AS A KEY REAGENT FOR THE PREPARATION OF ALIPHATIC SULPHONYL CHLORIDES AND BROMIDES. , 1936, Science.