Long-Term Stability of Protein Secondary Structure in Dry Seeds

[1]  E. Golovina,et al.  Membrane stabilization in the dry state. , 1997 .

[2]  W. Wolkers,et al.  Aging of Dry Desiccation-Tolerant Pollen Does Not Affect Protein Secondary Structure , 1995, Plant physiology.

[3]  J. Crowe,et al.  Altered Phase Behavior in Membranes of Aging Dry Pollen May Cause Imbibitional Leakage , 1994, Plant physiology.

[4]  P. Haris,et al.  Secondary structure of M13 coat protein in phospholipids studied by circular dichroism, Raman, and Fourier transform infrared spectroscopy. , 1993, Biochemistry.

[5]  W. C. Krueger,et al.  Infrared investigation on the conformation of proteins deposited on polyethylene films. , 1993, Analytical biochemistry.

[6]  T. Arakawa,et al.  Dehydration-induced conformational transitions in proteins and their inhibition by stabilizers. , 1993, Biophysical journal.

[7]  G. Fasman,et al.  Characterization of β‐turns in cyclic hexapeptides in solution by fourier transform IR spectroscopy , 1993, Biopolymers.

[8]  F. Hoekstra,et al.  Decreased Membrane Integrity in Aging Typha latifolia L.Pollen (Accumulation of Lysolipids and Free Fatty Acids) , 1993, Plant physiology.

[9]  H. Mantsch,et al.  Determination of protein secondary structure by Fourier transform infrared spectroscopy: a critical assessment. , 1993, Biochemistry.

[10]  K L Koster,et al.  Glass formation and desiccation tolerance in seeds. , 1991, Plant physiology.

[11]  J. Carpenter,et al.  An infrared spectroscopic study of the interactions of carbohydrates with dried proteins. , 1989, Biochemistry.

[12]  Robert J. Williams,et al.  The glassy state in corn embryos. , 1989, Plant physiology.

[13]  H. Mantsch,et al.  Structure of cytochrome b5 in solution by Fourier-transform infrared spectroscopy. , 1989, Biochemistry.

[14]  A. Blume,et al.  Fourier transform infrared spectroscopy of 13C = O-labeled phospholipids hydrogen bonding to carbonyl groups. , 1988, Biochemistry.

[15]  H. Mantsch,et al.  New insight into protein secondary structure from resolution-enhanced infrared spectra. , 1988, Biochimica et biophysica acta.

[16]  J. Carpenter,et al.  Stabilization of dry phospholipid bilayers and proteins by sugars. , 1987, The Biochemical journal.

[17]  K. Thompson,et al.  Seeds: Physiology of Development and Germination , 1986 .

[18]  H. Susi,et al.  Examination of the secondary structure of proteins by deconvolved FTIR spectra , 1986, Biopolymers.

[19]  J. Crowe,et al.  Preservation of Membranes in Anhydrobiotic Organisms: The Role of Trehalose , 1984, Science.

[20]  M. Posthumus,et al.  Extreme longevity of lotus seeds from Pulantien , 1982, Nature.

[21]  R. Ellis,et al.  The Influence of Temperature and Moisture on Seed Viability Period in Barley (Hordeum distichum L.) , 1980 .

[22]  G. Fasman,et al.  Structure and stability of biological macromolecules , 1969 .

[23]  S. N. Timasheff,et al.  Infrared spectra and protein conformations in aqueous solutions. I. The amide I band in H2O and D2O solutions. , 1967, The Journal of biological chemistry.

[24]  N. Tietz,et al.  Samen und Früchte des Handels und der Industrie , 1961 .

[25]  L. V. Barton Seed Preservation and Longevity , 1961 .

[26]  J. F. Groves,et al.  A Method of Prophesying the Life Duration of Seeds. , 1915, Proceedings of the National Academy of Sciences of the United States of America.