Parylene to silicon nitride bonding for post-integration of high pressure microfluidics to CMOS devices.

High pressure-rated channels allow microfluidic assays to be performed on a smaller footprint while keeping the throughput, thanks to the higher enabled flow rates, opening up perspectives for cost-effective integration of CMOS chips to microfluidic circuits. Accordingly, this study introduces an easy, low-cost and efficient method for realizing high pressure microfluidics-to-CMOS integration. First, we report a new low temperature (280 °C) Parylene-C wafer bonding technique, where O(2) plasma-treated Parylene-C bonds directly to Si(3)N(4) with an average bonding strength of 23 MPa. The technique works for silicon wafers with a nitride surface and uses a single layer of Parylene-C deposited only on one wafer, and allows microfluidic structures to be easily formed by directly bonding to the nitride passivation layer of the CMOS devices. Exploiting this technology, we demonstrated a microfluidic chip burst pressure as high as 16 MPa, while metal electrode structures on the silicon wafer remained functional after bonding.

[1]  Bo Lu,et al.  A study of the autofluorescence of parylene materials for microTAS applications. , 2010, Lab on a chip.

[2]  S. Takeuchi,et al.  Fabrication of Flexible Neural Probes With Built-In Microfluidic Channels by Thermal Bonding of Parylene , 2006, Journal of Microelectromechanical Systems.

[3]  P. Renaud,et al.  Flexible polyimide probes with microelectrodes and embedded microfluidic channels for simultaneous drug delivery and multi-channel monitoring of bioelectric activity. , 2004, Biosensors & bioelectronics.

[4]  Abdirahman Ali Yussuf,et al.  Sealing of polymeric-microfluidic devices by using high frequency electromagnetic field and screen printing technique , 2007 .

[5]  J. McLean,et al.  Low temperature fabrication of immersion capacitive micromachined ultrasonic transducers on silicon and dielectric substrates , 2004, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[6]  Russell R. A. Callahan,et al.  Effects of gas pressure and substrate temperature on the etching of parylene-N using a remote microwave oxygen plasma , 2001 .

[7]  Yong Liu,et al.  Integrated cell manipulation system--CMOS/microfluidic hybrid. , 2007, Lab on a chip.

[8]  K. Ainslie,et al.  Formation of primary amines on silicon nitride surfaces: a direct, plasma-based pathway to functionalization. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[9]  A. Ettouhami,et al.  Thermal buckling of silicon capacitive pressure sensor , 1996 .

[10]  K. Najafi,et al.  Characterization of low-temperature wafer bonding using thin-film parylene , 2005, Journal of Microelectromechanical Systems.

[11]  Yuelin Wang,et al.  The Bond Strength of Au/Si Eutectic Bonding Studied by IR Microscope , 2010, IEEE Transactions on Electronics Packaging Manufacturing.

[12]  Edoardo Charbon,et al.  Monolithic silicon chip for immunofluorescence detection on single magnetic beads. , 2010, Analytical chemistry.

[13]  K. Moon,et al.  Wafer bonding using microwave heating of parylene intermediate layers , 2004 .

[14]  Bruce K. Gale,et al.  Determining the optimal PDMS–PDMS bonding technique for microfluidic devices , 2008 .

[15]  Frantisek Svec,et al.  Room-temperature bonding for plastic high-pressure microfluidic chips. , 2007, Analytical chemistry.

[16]  Martin A. M. Gijs,et al.  Microparticle photometry in a CMOS microsystem combining magnetic actuation and in situ optical detection , 2008 .

[17]  D. Paul,et al.  Lamination‐based rapid prototyping of microfluidic devices using flexible thermoplastic substrates , 2007, Electrophoresis.

[18]  M. L. Nai,et al.  Low temperature wafer anodic bonding , 2003 .

[19]  Yong Liu,et al.  IC/microfluidic hybrid system for magnetic manipulation of biological cells , 2006, IEEE Journal of Solid-State Circuits.

[20]  H. Gardeniers,et al.  Room-temperature intermediate layer bonding for microfluidic devices. , 2009, Lab on a chip.

[21]  M. Mehregany,et al.  Microelectromechanical systems , 1993, IEEE Circuits and Devices Magazine.

[22]  S. Bhansali,et al.  A low-temperature bonding technique using spin-on fluorocarbon polymers to assemble microsystems , 2002 .

[23]  ジョバノヴィック,ミサ・ブイ,et al.  Solid-state sensor , 1995 .

[24]  Hsiharng Yang,et al.  A low-temperature wafer bonding technique using patternable materials , 2002 .

[25]  C. Quan,et al.  Wafer-level BCB bonding using a thermal press for microfluidics , 2009 .

[26]  D. Di Carlo,et al.  Rapid prototyping polymers for microfluidic devices and high pressure injections. , 2011, Lab on a chip.

[27]  Martin A. M. Gijs,et al.  A low-temperature parylene-to-silicon dioxide bonding technique for high-pressure microfluidics , 2011 .

[28]  T. Shepodd,et al.  High-pressure microfluidic control in lab-on-a-chip devices using mobile polymer monoliths. , 2002, Analytical chemistry.