The Local Ratio Technique and Its Application to Scheduling and Resource Allocation Problems

We give a short survey of the local ratio technique for approximation algorithms, focusing mainly on scheduling and resource allocation problems.

[1]  László Lovász,et al.  On the ratio of optimal integral and fractional covers , 1975, Discret. Math..

[2]  David P. Williamson,et al.  A general approximation technique for constrained forest problems , 1992, SODA '92.

[3]  Sanjeev Khanna,et al.  Page replacement for general caching problems , 1999, SODA '99.

[4]  Dror Rawitz,et al.  On the Equivalence between the Primal-Dual Schema and the Local-Ratio Technique , 2001, RANDOM-APPROX.

[5]  Meral Azizoglu,et al.  Scheduling a batch processing machine with incompatible job families , 2001 .

[6]  Reuven Bar-Yehuda,et al.  A Local-Ratio Theorem for Approximating the Weighted Vertex Cover Problem , 1983, WG.

[7]  Leo Kroon,et al.  On the computational complexity of (maximum) class scheduling , 1991 .

[8]  Karl Ernst Osthaus Van de Velde , 1920 .

[9]  J. A. Hoogeveen,et al.  Scheduling a batching machine , 1998 .

[10]  Sudipto Guha,et al.  Approximating the Throughput of Multiple Machines in Real-Time Scheduling , 2002, SIAM J. Comput..

[11]  R. Ravi,et al.  When cycles collapse: A general approximation technique for constrained two-connectivity problems , 1992, IPCO.

[12]  Esther M. Arkin,et al.  Scheduling jobs with fixed start and end times , 1987, Discret. Appl. Math..

[13]  Randeep Bhatia,et al.  Book review: Approximation Algorithms for NP-hard Problems. Edited by Dorit S. Hochbaum (PWS, 1997) , 1998, SIGA.

[14]  Toshihiro Fujito,et al.  A unified approximation algorithm problems ” , 1998 .

[15]  R. Ravi,et al.  When Trees Collide: An Approximation Algorithm for the Generalized Steiner Problem on Networks , 1995, SIAM J. Comput..

[16]  Sudipto Guha,et al.  Throughput maximization of real-time scheduling with batching , 2002, SODA '02.

[17]  Reuven Bar-Yehuda,et al.  Using homogenous weights for approximating the partial cover problem , 2001, SODA '99.

[18]  David S. Johnson,et al.  Approximation algorithms for combinatorial problems , 1973, STOC.

[19]  Uriel Feige A threshold of ln n for approximating set cover (preliminary version) , 1996, STOC '96.

[20]  Klaus Jansen,et al.  An approximation algorithm for the license and shift class design problem , 1994 .

[21]  Reuven Bar-Yehuda,et al.  A Linear-Time Approximation Algorithm for the Weighted Vertex Cover Problem , 1981, J. Algorithms.

[22]  Philippe Baptiste,et al.  Batching identical jobs , 2000, Math. Methods Oper. Res..

[23]  Burkhard Monien,et al.  Four Approximation Algorithms for the Feedback Vertex Set Problem , 1981, International Workshop on Graph-Theoretic Concepts in Computer Science.

[24]  R. Ravi,et al.  When trees collide: an approximation algorithm for the generalized Steiner problem on networks , 1991, STOC '91.

[25]  Reuven Bar-Yehuda,et al.  One for the Price of Two: a Unified Approach for Approximating Covering Problems , 1998, Algorithmica.

[26]  Piotr Berman,et al.  Multi-phase Algorithms for Throughput Maximization for Real-Time Scheduling , 2000, J. Comb. Optim..

[27]  Petr Slavík Improved Performance of the Greedy Algorithm for Partial Cover , 1997, Inf. Process. Lett..

[28]  Carsten Lund,et al.  Proof verification and hardness of approximation problems , 1992, Proceedings., 33rd Annual Symposium on Foundations of Computer Science.

[29]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[30]  David S. Johnson,et al.  Some Simplified NP-Complete Graph Problems , 1976, Theor. Comput. Sci..

[31]  S. Khuller,et al.  Approximation algorithms for partial covering problems , 2001, J. Algorithms.

[32]  Vasek Chvátal,et al.  A Greedy Heuristic for the Set-Covering Problem , 1979, Math. Oper. Res..

[33]  Piotr Berman,et al.  A 2-Approximation Algorithm for the Undirected Feedback Vertex Set Problem , 1999, SIAM J. Discret. Math..

[34]  Gregory Dobson,et al.  The Batch Loading and Scheduling Problem , 2001, Oper. Res..

[35]  Nader H. Bshouty,et al.  Massaging a Linear Programming Solution to Give a 2-Approximation for a Generalization of the Vertex Cover Problem , 1998, STACS.

[36]  Dorit S. Hochbaum,et al.  Approximation Algorithms for the Set Covering and Vertex Cover Problems , 1982, SIAM J. Comput..

[37]  Ran Raz,et al.  A sub-constant error-probability low-degree test, and a sub-constant error-probability PCP characterization of NP , 1997, STOC '97.

[38]  Reha Uzsoy,et al.  Scheduling batch processing machines with incompatible job families , 1995 .

[39]  Beverly Sackler,et al.  Approximation Algorithms for NP-Hard Problems in Combinatorial Optimization , 2007 .

[40]  Reuven Bar-Yehuda,et al.  A unified approach to approximating resource allocation and scheduling , 2001, JACM.

[41]  Reuven Bar-Yehuda,et al.  Approximation Algorithms for the Feedback Vertex Set Problem with Applications to Constraint Satisfaction and Bayesian Inference , 1998, SIAM J. Comput..

[42]  Carsten Lund,et al.  The Approximation of Maximum Subgraph Problems , 1993, ICALP.

[43]  Leslie E. Trotter,et al.  Vertex packings: Structural properties and algorithms , 1975, Math. Program..

[44]  P. Erd Os,et al.  On the maximal number of disjoint circuits of a graph , 2022, Publicationes Mathematicae Debrecen.

[45]  Dorit S. Hochbaum,et al.  Efficient bounds for the stable set, vertex cover and set packing problems , 1983, Discret. Appl. Math..

[46]  Phokion G. Kolaitis Hardness Of Approximations , 1996 .

[47]  Giorgio Gambosi,et al.  Complexity and Approximation , 1999, Springer Berlin Heidelberg.

[48]  Giorgio Gambosi,et al.  Complexity and approximation: combinatorial optimization problems and their approximability properties , 1999 .

[49]  Reha Uzsoy,et al.  Minimizing total tardiness on a batch processing machine with incompatible job families , 1998 .

[50]  Irit Dinur,et al.  The importance of being biased , 2002, STOC '02.

[51]  David P. Williamson,et al.  A primal-dual interpretation of two 2-approximation algorithms for the feedback vertex set problem in undirected graphs , 1998, Oper. Res. Lett..

[52]  F. Spieksma On the approximability of an interval scheduling problem , 1999 .

[53]  Dimitris Bertsimas,et al.  From valid inequalities to heuristics: a unified view of primal-dual approximation algorithms in covering problems , 1995, SODA '95.

[54]  Randeep Bhatia,et al.  Algorithmic aspects of bandwidth trading , 2003, TALG.

[55]  R. Möhring Algorithmic graph theory and perfect graphs , 1986 .

[56]  Sanjeev Arora,et al.  Probabilistic checking of proofs: a new characterization of NP , 1998, JACM.

[57]  Johan Håstad,et al.  Some optimal inapproximability results , 2001, JACM.

[58]  Eran Halperin,et al.  Improved approximation algorithms for the vertex cover problem in graphs and hypergraphs , 2000, SODA '00.

[59]  John M. Lewis,et al.  The Node-Deletion Problem for Hereditary Properties is NP-Complete , 1980, J. Comput. Syst. Sci..

[60]  Antoon W.J. Kolen,et al.  An analysis of shift class design problems , 1994 .

[61]  Ewald Speckenmeyer,et al.  Ramsey numbers and an approximation algorithm for the vertex cover problem , 1985, Acta Informatica.

[62]  Dan Geiger,et al.  Optimization of Pearl's Method of Conditioning and Greedy-Like Approximation Algorithms for the Vertex Feedback Set Problem , 1996, Artif. Intell..

[63]  Michael Kearns,et al.  Computational complexity of machine learning , 1990, ACM distinguished dissertations.

[64]  David P. Williamson,et al.  Primal-Dual Approximation Algorithms for Integral Flow and Multicut in Trees, with Applications to Matching and Set Cover , 1993, ICALP.

[65]  Rafail Ostrovsky,et al.  Approximation algorithms for the job interval selection problem and related scheduling problems , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.