Direction-dependent systems - A survey

In this paper, a survey on systems which exhibit gains and/or dynamics depending on the input or output direction is presented. Several examples of such systems covering a wide range of application areas, and the causes of their direction-dependent responses, are given. Direction-dependent systems are mathematically classified into three classes, depending on their state-space representation and switching function. The related linear dynamic, transient, and steady-state characteristics of these systems are investigated. Approaches to model direction-dependent systems using Wiener models, piecewise linear models, bilinear models and recurrent neural networks are described. Three application examples are used to illustrate the usefulness of the direction-dependent description. The advantages and disadvantages of direction-dependent models, as well as possible directions for future work, are pointed out.

[1]  K. Loparo,et al.  Stochastic stability properties of jump linear systems , 1992 .

[2]  Fredrik Rosenqvist Direction-dependent processes - Theory and application , 2004 .

[3]  S. Fassois,et al.  Duhem modeling of friction-induced hysteresis , 2008, IEEE Control Systems.

[4]  João Pedro Hespanha,et al.  Stabilization of nonholonomic integrators via logic-based switching , 1999, Autom..

[5]  H. Anthony Barker Design of multi-level pseudo-random signals for system identification , 1993 .

[6]  H. A. Barker,et al.  Effects of nonlinearities on the measurement of weighting functions by crosscorrelation using pseudorandom signals , 1973 .

[7]  J. McDonald Circuit Models to Predict Switching Performance of Nanosecond Blocking Oscillators , 1964 .

[8]  Eduardo Sontag Nonlinear regulation: The piecewise linear approach , 1981 .

[9]  Dennis S. Bernstein,et al.  Piecewise Linear Identification for the Rate-Independent and Rate-Dependent Duhem Hysteresis Models , 2007, IEEE Transactions on Automatic Control.

[10]  A. Sano,et al.  Robust controller design for batch polymerization reactors , 1994, Proceedings of 1994 American Control Conference - ACC '94.

[11]  A. Juloski,et al.  A BAYESIAN APPROACH TO THE IDENTIFICATION OF PIECEWISE LINEAR OUTPUT ERROR MODELS , 2006 .

[12]  K.J. Astrom,et al.  Wood chip refiner control , 1988, IEEE Control Systems Magazine.

[13]  Carlos Canudas de Wit,et al.  A new model for control of systems with friction , 1995, IEEE Trans. Autom. Control..

[14]  Robert Haber Nonlinear System Identification : Input-output Modeling Approach , 1999 .

[15]  Enrique Baeyens,et al.  Identification of block-oriented nonlinear systems using orthonormal bases , 2004 .

[16]  Tore Hägglund,et al.  An Automatic Tuning Procedure for Unsymmetrical Processes , 1995 .

[17]  Alberto Bemporad,et al.  Observability and controllability of piecewise affine and hybrid systems , 2000, IEEE Trans. Autom. Control..

[18]  Yves Rolain,et al.  Fast approximate identification of nonlinear systems , 2003, Autom..

[19]  Julian Morris,et al.  Neural networks in dynamic process state estimation and non-linear predictive control , 1995 .

[20]  David Angeli,et al.  Nonlinear norm-observability notions and stability of switched systems , 2005, IEEE Transactions on Automatic Control.

[21]  H. A. Barker,et al.  Optimised Wiener models for direction-dependent dynamic systems , 2001, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).

[22]  Heinz Unbehauen,et al.  Structure identification of nonlinear dynamic systems - A survey on input/output approaches , 1990, Autom..

[23]  Gordon Dodds,et al.  Detailed modelling and estimation of practical robotic parameters for precision control , 1995 .

[24]  Keith R. Godfrey,et al.  Wiener models of direction-dependent dynamic systems , 2003, Autom..

[25]  J W Gardner and P N Bartlett,et al.  Electronic Noses: Principles and Applications , 1999 .

[26]  W.K. Roots,et al.  Temperature Control in Industrial Processes , 1969, IEEE Transactions on Industrial Electronics and Control Instrumentation.

[27]  Philip Moore,et al.  Modelling study, analysis and robust servo control of pneumatic cylinder actuator systems , 2001 .

[28]  Keith R. Godfrey,et al.  Identification of processes having direction-dependent responses, with gas-turbine engine applications , 1974 .

[29]  G. Muscato,et al.  The Alicia/sup 3/ climbing robot: a three-module robot for automatic wall inspection , 2006, IEEE Robotics & Automation Magazine.

[30]  Alberto Bemporad,et al.  Identification of piecewise affine systems via mixed-integer programming , 2004, Autom..

[31]  Lennart Ljung,et al.  System identification toolbox for use with MATLAB , 1988 .

[32]  Ai Hui Tan,et al.  Modelling of Direction-dependent Systems using Bilinear Models , 2007, 2007 IEEE Instrumentation & Measurement Technology Conference IMTC 2007.

[33]  A. Morse,et al.  Basic problems in stability and design of switched systems , 1999 .

[34]  J. Wang,et al.  Identification of pneumatic cylinder friction parameters using genetic algorithms , 2004, IEEE/ASME Transactions on Mechatronics.

[35]  Yves Rolain,et al.  Frequency response function measurements in the presence of nonlinear distortions , 2001, Autom..

[36]  Keith R. Godfrey,et al.  Perturbation signals for system identification , 1993 .

[37]  D. M. Himmelblau,et al.  Online prediction of polymer product quality in an industrial reactor using recurrent neural networks , 1997, Proceedings of International Conference on Neural Networks (ICNN'97).

[38]  S. Billings,et al.  Identification of nonlinear systems using the Wiener model , 1977 .

[39]  Karl Johan Åström,et al.  Drum-boiler dynamics , 2000, Autom..

[40]  Karl Henrik Johansson,et al.  Stability of limit cycles with chattering in relay feedback systems , 2003, 2003 European Control Conference (ECC).

[41]  Charalambos Papaxanthis,et al.  Prolonged exposure to microgravity modifies limb endpoint kinematics during the swing phase of human walking , 2002, Neuroscience Letters.

[42]  Guy A. Dumont,et al.  Chip refiner motor load adaptive control using a nonlinear Laguerre model , 1993, Proceedings of IEEE International Conference on Control and Applications.

[43]  Navakanta Bhat,et al.  Analytical modeling of CMOS circuit delay distribution due to concurrent variations in multiple processes , 2006 .

[44]  Ai Hui Tan Linear approximation of bilinear Processes , 2005, IEEE Transactions on Control Systems Technology.

[45]  G. Muscato,et al.  A Direction Dependent Parametric Model for the Vacuum Adhesion System of the Alicia II Robot , 2006, 2006 14th Mediterranean Conference on Control and Automation.

[46]  Keith J. Burnham,et al.  On the discretization of single-input single-output bilinear systems , 1997 .

[47]  John R. Richards,et al.  Measurement and control of polymerization reactors , 2006, Comput. Chem. Eng..

[48]  R. W. Brockett,et al.  Asymptotic stability and feedback stabilization , 1982 .

[49]  William K. Roots,et al.  Mode-Dependent Time Constants in Three Forms of Space Heating , 1974 .

[50]  Keith R. Godfrey,et al.  Direction-dependent system modeling approaches exemplified through an electronic nose system , 2006, IEEE Transactions on Control Systems Technology.

[51]  Guy Albert Dumont,et al.  Dual adaptive control of chip refiner motor load , 1995, Autom..

[52]  Wu-Shiung Feng,et al.  Analytical delay model of CMOS inverter including channel-length modulation , 1992 .

[53]  Karsten Berns,et al.  Thermodynamical Modelling and Control of an Adhesion System for a Climbing Robot , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[54]  J. Ebers,et al.  Large-Signal Behavior of Junction Transistors , 1954, Proceedings of the IRE.

[55]  F. Rosenqvist,et al.  Controllability of direction-dependent processes , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[56]  D. Johnson,et al.  Advanced control strategies for polyolefin gas phase processes , 2002, Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301).

[57]  A. Kienle,et al.  Modeling and analysis of a plant for the production of low density polyethylene , 2006, Comput. Chem. Eng..

[58]  Keith R. Godfrey,et al.  Application of multi-level signals to the identification of direction-dependent processes , 2004, Autom..

[59]  Zikuan Liu,et al.  Jump linear quadratic regulator with controlled jump rates , 2001, IEEE Trans. Autom. Control..

[60]  Paul Turner,et al.  RECENT PROGRESS AND INDUSTRIAL EXPERIENCES WITH NONLINEAR MODEL IDENTIFICATION FOR MPC APPLICATIONS IN POLYMER MANUFACTURING , 2006 .

[61]  S. Billings,et al.  Piecewise linear identification of non-linear systems , 1987 .

[62]  M. Kaneko,et al.  Basic considerations on transmission characteristics for tendon drive robots , 1991, Fifth International Conference on Advanced Robotics 'Robots in Unstructured Environments.

[63]  Philippe Saffré,et al.  Asymmetric friction: Modelling and experiments , 2007 .

[64]  Keith R. Godfrey,et al.  Modeling of direction-dependent Processes using Wiener models and neural networks with nonlinear output error structure , 2004, IEEE Transactions on Instrumentation and Measurement.

[65]  J. W. Gardner,et al.  Design of conducting polymer gas sensors: Modelling and experiment , 1993 .

[66]  C. Papaxanthis,et al.  Motor planning of arm movements is direction-dependent in the gravity field , 2007, Neuroscience.

[67]  Per-Olof Gutman Stabilizing controllers for bilinear systems , 1981 .

[68]  C. Bruni,et al.  Bilinear systems: An appealing class of "nearly linear" systems in theory and applications , 1974 .

[69]  Julian Morris,et al.  Nonlinear and direction-dependent dynamic process modelling using neural networks , 1996 .

[70]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[71]  T Pozzo,et al.  Similar planning strategies for whole-body and arm movements performed in the sagittal plane , 2003, Neuroscience.

[72]  Alberto Bemporad,et al.  Control of systems integrating logic, dynamics, and constraints , 1999, Autom..

[73]  R. Decarlo,et al.  Perspectives and results on the stability and stabilizability of hybrid systems , 2000, Proceedings of the IEEE.

[74]  F. Rosenqvist,et al.  Realisation and estimation of piecewise-linear output-error models , 2005, Autom..

[75]  Julian W. Gardner,et al.  Modelling of gas-sensitive conducting polymer devices , 1995 .

[76]  K. R. Godfrey,et al.  Identification of processes with direction-dependent dynamic responses , 1972 .

[77]  Keith R. Godfrey,et al.  Identification of processes with direction-dependent dynamics , 2001 .

[78]  Ai Hui Tan Identification of direction-dependent processes using maximum length ternary signals , 2003 .

[79]  Shuzhi Sam Ge,et al.  Analysis and synthesis of switched linear control systems , 2005, Autom..

[80]  I-Lung Chien,et al.  Nonlinear identification and control of a high-purity distillation column: a case study , 1995 .

[81]  M. Verhaegen,et al.  Subspace identification of piecewise linear systems , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[82]  Ai Hui Tan,et al.  Comparison of bilinear systems with direction-dependent systems , 2004 .

[83]  Qing-Guo Wang,et al.  Automatic tuning of nonlinear PID controllers for unsymmetrical processes , 1998 .