Determination of Optimum Classifier and Feature Subset in Hyperspectral Images based on Ant Colony System

[1]  Li Zhuo,et al.  A genetic algorithm based wrapper feature selection method for classification of hyperspectral images using support vector machine , 2008, Geoinformatics.

[2]  Xiaoli Zhang,et al.  An ACO-based algorithm for parameter optimization of support vector machines , 2010, Expert Syst. Appl..

[3]  Ling Wang,et al.  A Modified Adaptive Chaotic Binary Ant System and Its Application in Chemical Process Fault Diagnosis , 2006, ICNC.

[4]  Hua-chao Yang,et al.  Research into a Feature Selection Method for Hyperspectral Imagery Using PSO and SVM , 2007 .

[5]  Chih-Hung Wu,et al.  A real-valued genetic algorithm to optimize the parameters of support vector machine for predicting bankruptcy , 2007, Expert Syst. Appl..

[6]  Joydeep Ghosh,et al.  Investigation of the random forest framework for classification of hyperspectral data , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[7]  John B. O. Mitchell,et al.  Simultaneous feature selection and parameter optimisation using an artificial ant colony: case study of melting point prediction , 2008, Chemistry Central journal.

[8]  André Carlos Ponce de Leon Ferreira de Carvalho,et al.  Evolutionary tuning of SVM parameter values in multiclass problems , 2008, Neurocomputing.

[9]  Oguz Findik,et al.  A comparison of feature selection models utilizing binary particle swarm optimization and genetic algorithm in determining coronary artery disease using support vector machine , 2010, Expert Syst. Appl..

[10]  Nasser Ghasem-Aghaee,et al.  Text feature selection using ant colony optimization , 2009, Expert Syst. Appl..

[11]  Lorenzo Bruzzone,et al.  Kernel-based methods for hyperspectral image classification , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[12]  Farid Melgani,et al.  Toward an Optimal SVM Classification System for Hyperspectral Remote Sensing Images , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[13]  Cheng-Lung Huang,et al.  ACO-based hybrid classification system with feature subset selection and model parameters optimization , 2009, Neurocomputing.

[14]  Yanqing Zhang,et al.  A genetic algorithm-based method for feature subset selection , 2008, Soft Comput..

[15]  Yong Wang,et al.  Feature selection using tabu search with long-term memories and probabilistic neural networks , 2009, Pattern Recognit. Lett..

[16]  Jing Zhao,et al.  A Modified Ant Colony Optimization Algorithm for Tumor Marker Gene Selection , 2009, Genom. Proteom. Bioinform..

[17]  Mark A. Richardson,et al.  An introduction to hyperspectral imaging and its application for security, surveillance and target acquisition , 2010 .

[18]  Robert I. Damper,et al.  Customizing Kernel Functions for SVM-Based Hyperspectral Image Classification , 2008, IEEE Transactions on Image Processing.

[19]  Shiv O. Prasher,et al.  Measuring performance in precision agriculture: CART-A decision tree approach , 2006 .

[20]  R. Lunetta,et al.  Remote sensing and Geographic Information System data integration: error sources and research issues , 1991 .

[21]  Chein-I Chang,et al.  Hyperspectral Data Exploitation , 2007 .

[22]  P. Groves,et al.  Methodology For Hyperspectral Band Selection , 2004 .

[23]  Lorenzo Bruzzone,et al.  Classification of hyperspectral remote sensing images with support vector machines , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[24]  Cheng-Lung Huang,et al.  A GA-based feature selection and parameters optimizationfor support vector machines , 2006, Expert Syst. Appl..

[25]  Zne-Jung Lee,et al.  Parameter determination of support vector machine and feature selection using simulated annealing approach , 2008, Appl. Soft Comput..

[26]  Ming-Chi Lee,et al.  Using support vector machine with a hybrid feature selection method to the stock trend prediction , 2009, Expert Syst. Appl..

[27]  Guoyin Wang,et al.  Solving the Attribute Reduction Problem with Ant Colony Optimization , 2011, Trans. Rough Sets.

[28]  Hao Wu,et al.  An effective feature selection method for hyperspectral image classification based on genetic algorithm and support vector machine , 2011, Knowl. Based Syst..

[29]  Shih-Wei Lin,et al.  Particle swarm optimization for parameter determination and feature selection of support vector machines , 2008, Expert Syst. Appl..

[30]  Sylvain Arlot,et al.  A survey of cross-validation procedures for model selection , 2009, 0907.4728.