Improving smoothness and accuracy of Modified Butterfly subdivision scheme
暂无分享,去创建一个
[1] N. Dyn,et al. A butterfly subdivision scheme for surface interpolation with tension control , 1990, TOGS.
[2] A. Levin,et al. Polynomial generation and quasi-interpolation in stationary non-uniform subdivision , 2003, Comput. Aided Geom. Des..
[3] Geir Dahl,et al. Subdivision schemes, network flows and linear optimization , 2013, 1306.0685.
[4] Nicola Guglielmi,et al. Regularity of non-stationary subdivision: a matrix approach , 2017, Numerische Mathematik.
[5] Lucia Romani. From approximating subdivision schemes for exponential splines to high-performance interpolating algorithms , 2009 .
[6] D. Levin,et al. Analysis of asymptotically equivalent binary subdivision schemes , 1995 .
[7] Nira Dyn,et al. Convergence of univariate non-stationary subdivision schemes via asymptotical similarity , 2014, 1410.2729.
[8] Y. Lee,et al. Non-stationary subdivision schemes for surface interpolation based on exponential polynomials , 2010 .
[9] Maria Charina,et al. Polynomial reproduction of multivariate scalar subdivision schemes , 2012, J. Comput. Appl. Math..
[10] Lucia Romani,et al. Reproduction of exponential polynomials by multivariate non-stationary subdivision schemes with a general dilation matrix , 2013, Numerische Mathematik.
[11] Peter Schröder,et al. Interpolating Subdivision for meshes with arbitrary topology , 1996, SIGGRAPH.
[12] Michael Unser,et al. Spline-Based Deforming Ellipsoids for Interactive 3D Bioimage Segmentation , 2013, IEEE Transactions on Image Processing.
[13] Michael Unser,et al. Ellipse-preserving Hermite interpolation and subdivision , 2014, 1411.4627.
[14] Carolina Vittoria Beccari,et al. A non-stationary uniform tension controlled interpolating 4-point scheme reproducing conics , 2007, Comput. Aided Geom. Des..
[15] D. Levin,et al. Subdivision schemes in geometric modelling , 2002, Acta Numerica.
[16] Gilles Deslauriers,et al. Symmetric iterative interpolation processes , 1989 .