Improving smoothness and accuracy of Modified Butterfly subdivision scheme

Motivated by the increasing request of surface representation techniques suitable for biomedical imaging applications, we construct a non-stationary subdivision scheme for regular 3-directional grids, which enjoys the following properties: (i) interpolation, (ii) affine invariance, (iii) C2 smoothness, (iv) approximation order 6 and (v) the capability of reproducing several trigonometric surfaces, especially ellipsoids. To study the smoothness properties of this new scheme via existing analysis tools, we also construct an auxiliary stationary subdivision scheme enjoying properties (i)-(iv). Taking into account that, when applied on regular 3-directional grids, the Modified Butterfly scheme is C1 and has approximation order 4, the subdivision schemes derived in this paper can be considered improved variants of the Modified Butterfly scheme.

[1]  N. Dyn,et al.  A butterfly subdivision scheme for surface interpolation with tension control , 1990, TOGS.

[2]  A. Levin,et al.  Polynomial generation and quasi-interpolation in stationary non-uniform subdivision , 2003, Comput. Aided Geom. Des..

[3]  Geir Dahl,et al.  Subdivision schemes, network flows and linear optimization , 2013, 1306.0685.

[4]  Nicola Guglielmi,et al.  Regularity of non-stationary subdivision: a matrix approach , 2017, Numerische Mathematik.

[5]  Lucia Romani From approximating subdivision schemes for exponential splines to high-performance interpolating algorithms , 2009 .

[6]  D. Levin,et al.  Analysis of asymptotically equivalent binary subdivision schemes , 1995 .

[7]  Nira Dyn,et al.  Convergence of univariate non-stationary subdivision schemes via asymptotical similarity , 2014, 1410.2729.

[8]  Y. Lee,et al.  Non-stationary subdivision schemes for surface interpolation based on exponential polynomials , 2010 .

[9]  Maria Charina,et al.  Polynomial reproduction of multivariate scalar subdivision schemes , 2012, J. Comput. Appl. Math..

[10]  Lucia Romani,et al.  Reproduction of exponential polynomials by multivariate non-stationary subdivision schemes with a general dilation matrix , 2013, Numerische Mathematik.

[11]  Peter Schröder,et al.  Interpolating Subdivision for meshes with arbitrary topology , 1996, SIGGRAPH.

[12]  Michael Unser,et al.  Spline-Based Deforming Ellipsoids for Interactive 3D Bioimage Segmentation , 2013, IEEE Transactions on Image Processing.

[13]  Michael Unser,et al.  Ellipse-preserving Hermite interpolation and subdivision , 2014, 1411.4627.

[14]  Carolina Vittoria Beccari,et al.  A non-stationary uniform tension controlled interpolating 4-point scheme reproducing conics , 2007, Comput. Aided Geom. Des..

[15]  D. Levin,et al.  Subdivision schemes in geometric modelling , 2002, Acta Numerica.

[16]  Gilles Deslauriers,et al.  Symmetric iterative interpolation processes , 1989 .