A paradigm for higher-order polygonal elements in finite elasticity using a gradient correction scheme
暂无分享,去创建一个
[1] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[2] M. Biot. Surface instability of rubber in compression , 1963 .
[3] L. Herrmann. Elasticity Equations for Incompressible and Nearly Incompressible Materials by a Variational Theorem , 1965 .
[4] P. Raviart,et al. Conforming and nonconforming finite element methods for solving the stationary Stokes equations I , 1973 .
[5] P. Hood,et al. A numerical solution of the Navier-Stokes equations using the finite element technique , 1973 .
[6] Recent developments in the theory of finite element approximations of boundary value problems in nonlinear elasticity , 1979 .
[7] J. Ball,et al. Discontinuous equilibrium solutions and cavitation in nonlinear elasticity , 1982, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.
[8] P. Tallec. Existence and approximation results for nonlinear mixed problems: Application to incompressible finite elasticity , 1982 .
[9] T. R. Hughes,et al. Mathematical foundations of elasticity , 1982 .
[10] Noboru Kikuchi,et al. Finite element methods for constrained problems in elasticity , 1982 .
[11] Ray W. Ogden,et al. Nonlinear Elastic Deformations , 1985 .
[12] J. C. Simo,et al. Variational and projection methods for the volume constraint in finite deformation elasto-plasticity , 1985 .
[13] D. A. Dunavant. High degree efficient symmetrical Gaussian quadrature rules for the triangle , 1985 .
[14] T. Hughes,et al. A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuscka-Brezzi condition: A stable Petrov-Galerkin formulation of , 1986 .
[15] K. Bathe,et al. A finite element formulation for nonlinear incompressible elastic and inelastic analysis , 1987 .
[16] J. Douglas,et al. Stabilized mixed methods for the Stokes problem , 1988 .
[17] A. Gent,et al. Cavitation in model elastomeric composites , 1988 .
[18] Alan N. Gent,et al. Cavitation in Rubber: A Cautionary Tale , 1990 .
[19] Atef F. Saleeb,et al. Large strain analysis of rubber-like materials based on a perturbed Lagrangian variational principle , 1991 .
[20] K. Bathe,et al. The inf-sup test , 1993 .
[21] Jiun-Shyan Chen,et al. On the control of pressure oscillation in bilinear-displacement constant-pressure element , 1995 .
[22] E. Stein,et al. On some mixed finite element methods for incompressible and nearly incompressible finite elasticity , 1996 .
[23] V. D. Ivanov,et al. The non-Sibsonian interpolation : A new method of interpolation of the values of a function on an arbitrary set of points , 1997 .
[24] Weimin Han,et al. On the perturbed Lagrangian formulation for nearly incompressible and incompressible hyperelasticity , 1997 .
[25] T. Belytschko,et al. Consistent pseudo-derivatives in meshless methods , 1997 .
[26] R. D. Wood,et al. Nonlinear Continuum Mechanics for Finite Element Analysis , 1997 .
[27] Kokichi Sugihara,et al. Two Generalizations of an Interpolant Based on Voronoi Diagrams , 1999, Int. J. Shape Model..
[28] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[29] Mark Meyer,et al. Generalized Barycentric Coordinates on Irregular Polygons , 2002, J. Graphics, GPU, & Game Tools.
[30] M. Floater. Mean value coordinates , 2003, Computer Aided Geometric Design.
[31] N. Sukumar,et al. Conforming polygonal finite elements , 2004 .
[32] S. N. Atluri,et al. On the formulation of variational theorems involving volume constraints , 1989 .
[33] N. Sukumar. Construction of polygonal interpolants: a maximum entropy approach , 2004 .
[34] John Lin,et al. Smooth Two-Dimensional Interpolations: A Recipe for All Polygons , 2005, J. Graph. Tools.
[35] Kai Hormann,et al. Mean value coordinates for arbitrary planar polygons , 2006, TOGS.
[36] Magdalena Ortiz,et al. Local maximum‐entropy approximation schemes: a seamless bridge between finite elements and meshfree methods , 2006 .
[37] Kai Hormann,et al. A general construction of barycentric coordinates over convex polygons , 2006, Adv. Comput. Math..
[38] Mark Meyer,et al. Harmonic coordinates for character articulation , 2007, ACM Trans. Graph..
[39] O. Lopez-Pamies. Onset of Cavitation in Compressible, Isotropic, Hyperelastic Solids , 2009 .
[40] P. Wriggers. Nonlinear Finite Element Methods , 2008 .
[41] Joseph E. Bishop,et al. Simulating the pervasive fracture of materials and structures using randomly close packed Voronoi tessellations , 2009 .
[42] J. Leblanc. Filled Polymers: Science and Industrial Applications , 2009 .
[43] Javier Segurado,et al. Finite deformation of incompressible fiber-reinforced elastomers: A computational micromechanics approach , 2009 .
[44] Konstantin Lipnikov,et al. A Mimetic Discretization of the Stokes Problem with Selected Edge Bubbles , 2010, SIAM J. Sci. Comput..
[45] N. Sukumar,et al. Generalized Gaussian quadrature rules on arbitrary polygons , 2010 .
[46] O. Lopez-Pamies. An Exact Result for the Macroscopic Response of Particle-Reinforced Neo-Hookean Solids , 2010 .
[47] Oscar Lopez-Pamies,et al. A new I1-based hyperelastic model for rubber elastic materials , 2010 .
[48] Xianmin Xu,et al. AN EFFICIENT NUMERICAL METHOD FOR CAVITATION IN NONLINEAR ELASTICITY , 2011 .
[49] O. Lopez-Pamies,et al. Cavitation in elastomeric solids: I—A defect-growth theory , 2011 .
[50] N. Sukumar,et al. Numerical integration of polynomials and discontinuous functions on irregular convex polygons and polyhedrons , 2011 .
[51] O. Lopez-Pamies,et al. Cavitation in elastomeric solids: II—Onset-of-cavitation surfaces for Neo-Hookean materials , 2011 .
[52] G. Paulino,et al. PolyMesher: a general-purpose mesh generator for polygonal elements written in Matlab , 2012 .
[53] O. Lopez-Pamies,et al. A finite element approach to study cavitation instabilities in non-linear elastic solids under general loading conditions , 2012 .
[54] N. Sukumar,et al. Quadratic maximum-entropy serendipity shape functions for arbitrary planar polygons , 2013 .
[55] Lourenço Beirão da Veiga,et al. Virtual Elements for Linear Elasticity Problems , 2013, SIAM J. Numer. Anal..
[56] M. Fortin,et al. Mixed Finite Element Methods and Applications , 2013 .
[57] Glaucio H. Paulino,et al. Addressing Integration Error for Polygonal Finite Elements Through Polynomial Projections: A Patch Test Connection , 2013, 1307.4423.
[58] Chandrajit L. Bajaj,et al. Interpolation error estimates for mean value coordinates over convex polygons , 2011, Adv. Comput. Math..
[59] Oscar Lopez-Pamies,et al. The nonlinear elastic response of suspensions of rigid inclusions in rubber: II—A simple explicit approximation for finite-concentration suspensions , 2013 .
[60] Chandrajit L. Bajaj,et al. Quadratic serendipity finite elements on polygons using generalized barycentric coordinates , 2011, Math. Comput..
[61] Glaucio H. Paulino,et al. On the Virtual Element Method for three-dimensional linear elasticity problems on arbitrary polyhedral meshes , 2014 .
[62] O. Lopez-Pamies,et al. Cavitation in rubber: an elastic instability or a fracture phenomenon? , 2015, International Journal of Fracture.
[63] M. Floater. Wachspress and Mean Value Coordinates , 2014 .
[64] Richard S. Falk,et al. Basic principles of mixed Virtual Element Methods , 2014 .
[65] A. Russo,et al. New perspectives on polygonal and polyhedral finite element methods , 2014 .
[66] Joseph E. Bishop,et al. A displacement‐based finite element formulation for general polyhedra using harmonic shape functions , 2014 .
[67] Glaucio H. Paulino,et al. Polygonal finite elements for incompressible fluid flow , 2014 .
[68] L. B. D. Veiga,et al. A virtual element method with arbitrary regularity , 2014 .
[69] Jean B. Lasserre,et al. Numerical integration of homogeneous functions on convex and nonconvex polygons and polyhedra , 2015, Computational Mechanics.
[70] Michael S. Floater,et al. Generalized barycentric coordinates and applications * , 2015, Acta Numerica.
[71] Glaucio H. Paulino,et al. Gradient correction for polygonal and polyhedral finite elements , 2015 .
[72] Glaucio H. Paulino,et al. Polygonal finite elements for finite elasticity , 2015 .
[73] Daniel W. Spring,et al. Filled elastomers: A theory of filler reinforcement based on hydrodynamic and interphasial effects , 2015 .
[74] Sophia Blau,et al. Analysis Of The Finite Element Method , 2016 .