A paradigm for higher-order polygonal elements in finite elasticity using a gradient correction scheme

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  M. Biot Surface instability of rubber in compression , 1963 .

[3]  L. Herrmann Elasticity Equations for Incompressible and Nearly Incompressible Materials by a Variational Theorem , 1965 .

[4]  P. Raviart,et al.  Conforming and nonconforming finite element methods for solving the stationary Stokes equations I , 1973 .

[5]  P. Hood,et al.  A numerical solution of the Navier-Stokes equations using the finite element technique , 1973 .

[6]  Recent developments in the theory of finite element approximations of boundary value problems in nonlinear elasticity , 1979 .

[7]  J. Ball,et al.  Discontinuous equilibrium solutions and cavitation in nonlinear elasticity , 1982, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[8]  P. Tallec Existence and approximation results for nonlinear mixed problems: Application to incompressible finite elasticity , 1982 .

[9]  T. R. Hughes,et al.  Mathematical foundations of elasticity , 1982 .

[10]  Noboru Kikuchi,et al.  Finite element methods for constrained problems in elasticity , 1982 .

[11]  Ray W. Ogden,et al.  Nonlinear Elastic Deformations , 1985 .

[12]  J. C. Simo,et al.  Variational and projection methods for the volume constraint in finite deformation elasto-plasticity , 1985 .

[13]  D. A. Dunavant High degree efficient symmetrical Gaussian quadrature rules for the triangle , 1985 .

[14]  T. Hughes,et al.  A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuscka-Brezzi condition: A stable Petrov-Galerkin formulation of , 1986 .

[15]  K. Bathe,et al.  A finite element formulation for nonlinear incompressible elastic and inelastic analysis , 1987 .

[16]  J. Douglas,et al.  Stabilized mixed methods for the Stokes problem , 1988 .

[17]  A. Gent,et al.  Cavitation in model elastomeric composites , 1988 .

[18]  Alan N. Gent,et al.  Cavitation in Rubber: A Cautionary Tale , 1990 .

[19]  Atef F. Saleeb,et al.  Large strain analysis of rubber-like materials based on a perturbed Lagrangian variational principle , 1991 .

[20]  K. Bathe,et al.  The inf-sup test , 1993 .

[21]  Jiun-Shyan Chen,et al.  On the control of pressure oscillation in bilinear-displacement constant-pressure element , 1995 .

[22]  E. Stein,et al.  On some mixed finite element methods for incompressible and nearly incompressible finite elasticity , 1996 .

[23]  V. D. Ivanov,et al.  The non-Sibsonian interpolation : A new method of interpolation of the values of a function on an arbitrary set of points , 1997 .

[24]  Weimin Han,et al.  On the perturbed Lagrangian formulation for nearly incompressible and incompressible hyperelasticity , 1997 .

[25]  T. Belytschko,et al.  Consistent pseudo-derivatives in meshless methods , 1997 .

[26]  R. D. Wood,et al.  Nonlinear Continuum Mechanics for Finite Element Analysis , 1997 .

[27]  Kokichi Sugihara,et al.  Two Generalizations of an Interpolant Based on Voronoi Diagrams , 1999, Int. J. Shape Model..

[28]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[29]  Mark Meyer,et al.  Generalized Barycentric Coordinates on Irregular Polygons , 2002, J. Graphics, GPU, & Game Tools.

[30]  M. Floater Mean value coordinates , 2003, Computer Aided Geometric Design.

[31]  N. Sukumar,et al.  Conforming polygonal finite elements , 2004 .

[32]  S. N. Atluri,et al.  On the formulation of variational theorems involving volume constraints , 1989 .

[33]  N. Sukumar Construction of polygonal interpolants: a maximum entropy approach , 2004 .

[34]  John Lin,et al.  Smooth Two-Dimensional Interpolations: A Recipe for All Polygons , 2005, J. Graph. Tools.

[35]  Kai Hormann,et al.  Mean value coordinates for arbitrary planar polygons , 2006, TOGS.

[36]  Magdalena Ortiz,et al.  Local maximum‐entropy approximation schemes: a seamless bridge between finite elements and meshfree methods , 2006 .

[37]  Kai Hormann,et al.  A general construction of barycentric coordinates over convex polygons , 2006, Adv. Comput. Math..

[38]  Mark Meyer,et al.  Harmonic coordinates for character articulation , 2007, ACM Trans. Graph..

[39]  O. Lopez-Pamies Onset of Cavitation in Compressible, Isotropic, Hyperelastic Solids , 2009 .

[40]  P. Wriggers Nonlinear Finite Element Methods , 2008 .

[41]  Joseph E. Bishop,et al.  Simulating the pervasive fracture of materials and structures using randomly close packed Voronoi tessellations , 2009 .

[42]  J. Leblanc Filled Polymers: Science and Industrial Applications , 2009 .

[43]  Javier Segurado,et al.  Finite deformation of incompressible fiber-reinforced elastomers: A computational micromechanics approach , 2009 .

[44]  Konstantin Lipnikov,et al.  A Mimetic Discretization of the Stokes Problem with Selected Edge Bubbles , 2010, SIAM J. Sci. Comput..

[45]  N. Sukumar,et al.  Generalized Gaussian quadrature rules on arbitrary polygons , 2010 .

[46]  O. Lopez-Pamies An Exact Result for the Macroscopic Response of Particle-Reinforced Neo-Hookean Solids , 2010 .

[47]  Oscar Lopez-Pamies,et al.  A new I1-based hyperelastic model for rubber elastic materials , 2010 .

[48]  Xianmin Xu,et al.  AN EFFICIENT NUMERICAL METHOD FOR CAVITATION IN NONLINEAR ELASTICITY , 2011 .

[49]  O. Lopez-Pamies,et al.  Cavitation in elastomeric solids: I—A defect-growth theory , 2011 .

[50]  N. Sukumar,et al.  Numerical integration of polynomials and discontinuous functions on irregular convex polygons and polyhedrons , 2011 .

[51]  O. Lopez-Pamies,et al.  Cavitation in elastomeric solids: II—Onset-of-cavitation surfaces for Neo-Hookean materials , 2011 .

[52]  G. Paulino,et al.  PolyMesher: a general-purpose mesh generator for polygonal elements written in Matlab , 2012 .

[53]  O. Lopez-Pamies,et al.  A finite element approach to study cavitation instabilities in non-linear elastic solids under general loading conditions , 2012 .

[54]  N. Sukumar,et al.  Quadratic maximum-entropy serendipity shape functions for arbitrary planar polygons , 2013 .

[55]  Lourenço Beirão da Veiga,et al.  Virtual Elements for Linear Elasticity Problems , 2013, SIAM J. Numer. Anal..

[56]  M. Fortin,et al.  Mixed Finite Element Methods and Applications , 2013 .

[57]  Glaucio H. Paulino,et al.  Addressing Integration Error for Polygonal Finite Elements Through Polynomial Projections: A Patch Test Connection , 2013, 1307.4423.

[58]  Chandrajit L. Bajaj,et al.  Interpolation error estimates for mean value coordinates over convex polygons , 2011, Adv. Comput. Math..

[59]  Oscar Lopez-Pamies,et al.  The nonlinear elastic response of suspensions of rigid inclusions in rubber: II—A simple explicit approximation for finite-concentration suspensions , 2013 .

[60]  Chandrajit L. Bajaj,et al.  Quadratic serendipity finite elements on polygons using generalized barycentric coordinates , 2011, Math. Comput..

[61]  Glaucio H. Paulino,et al.  On the Virtual Element Method for three-dimensional linear elasticity problems on arbitrary polyhedral meshes , 2014 .

[62]  O. Lopez-Pamies,et al.  Cavitation in rubber: an elastic instability or a fracture phenomenon? , 2015, International Journal of Fracture.

[63]  M. Floater Wachspress and Mean Value Coordinates , 2014 .

[64]  Richard S. Falk,et al.  Basic principles of mixed Virtual Element Methods , 2014 .

[65]  A. Russo,et al.  New perspectives on polygonal and polyhedral finite element methods , 2014 .

[66]  Joseph E. Bishop,et al.  A displacement‐based finite element formulation for general polyhedra using harmonic shape functions , 2014 .

[67]  Glaucio H. Paulino,et al.  Polygonal finite elements for incompressible fluid flow , 2014 .

[68]  L. B. D. Veiga,et al.  A virtual element method with arbitrary regularity , 2014 .

[69]  Jean B. Lasserre,et al.  Numerical integration of homogeneous functions on convex and nonconvex polygons and polyhedra , 2015, Computational Mechanics.

[70]  Michael S. Floater,et al.  Generalized barycentric coordinates and applications * , 2015, Acta Numerica.

[71]  Glaucio H. Paulino,et al.  Gradient correction for polygonal and polyhedral finite elements , 2015 .

[72]  Glaucio H. Paulino,et al.  Polygonal finite elements for finite elasticity , 2015 .

[73]  Daniel W. Spring,et al.  Filled elastomers: A theory of filler reinforcement based on hydrodynamic and interphasial effects , 2015 .

[74]  Sophia Blau,et al.  Analysis Of The Finite Element Method , 2016 .

[75]  A variational formulation with rigid-body constraints for finite elasticity: theory, finite element implementation, and applications , 2016 .