Optomechanical magnetometry with a macroscopic resonator

We demonstrate a centimeter-scale optomechanical magnetometer based on a crystalline whispering gallery mode resonator. The large size of the resonator allows high magnetic field sensitivity to be achieved in the hertz to kilohertz frequency range. A peak sensitivity of 131 pT per root Hz is reported, in a magnetically unshielded non-cryogenic environment and using optical power levels beneath 100 microWatt. Femtotesla range sensitivity may be possible in future devices with further optimization of laser noise and the physical structure of the resonator, allowing applications in high-performance magnetometry.

[1]  Lute Maleki,et al.  Crystal quartz optical whispering-gallery resonators. , 2008, Optics letters.

[2]  Christopher T. Russell,et al.  A sigma–delta fluxgate magnetometer for space applications , 2003 .

[3]  A. Matsko,et al.  Review of Applications of Whispering-Gallery Mode Resonators in Photonics and Nonlinear Optics , 2005 .

[4]  G. Engdahl Handbook of Giant Magnetostrictive Materials , 1999 .

[5]  Hua Zhao,et al.  Flux-gate magnetometer for Mars exploration , 2008, International Symposium on Instrumentation and Control Technology.

[6]  Andrey B. Matsko,et al.  Efficient upconversion of subterahertz radiation in a high-Q whispering gallery resonator. , 2009, Optics letters.

[7]  D. Hoffman,et al.  Magnetoencephalography with an atomic magnetometer , 2006 .

[8]  J Knittel,et al.  Cavity optomechanical magnetometer. , 2012, Physical review letters.

[9]  I Savukov,et al.  Magnetic-resonance imaging of the human brain with an atomic magnetometer. , 2013, Applied physics letters.

[10]  K. Vahala,et al.  Optomechanical crystals , 2009, Nature.

[11]  S. Dong,et al.  Detection of pico-Tesla magnetic fields using magneto-electric sensors at room temperature , 2006 .

[12]  K. Vahala,et al.  Mechanical oscillation and cooling actuated by the optical gradient force. , 2009, Physical review letters.

[13]  Michael R. Vanner,et al.  Phonon-tunnelling dissipation in mechanical resonators , 2010, Nature communications.

[14]  R. Golub,et al.  Search for a Neutron Electric Dipole Moment , 2005, Journal of research of the National Institute of Standards and Technology.

[15]  T. J. Kippenberg,et al.  Ultra-high-Q toroid microcavity on a chip , 2003, Nature.

[16]  E. Black An introduction to Pound–Drever–Hall laser frequency stabilization , 2001 .

[17]  A. Chwala,et al.  SQUID technology for geophysical exploration , 2005 .

[18]  K. Vahala,et al.  High sensitivity nanoparticle detection using optical microcavities , 2011, Proceedings of the National Academy of Sciences.

[19]  Halina Rubinsztein-Dunlop,et al.  Ultrasensitive Optomechanical Magnetometry , 2014, Advanced materials.

[20]  Lute Maleki,et al.  Optical resonators with ten million finesse. , 2007, Optics express.

[21]  Andrew G. Glen,et al.  APPL , 2001 .

[22]  J. Raimond,et al.  Very low threshold whispering-gallery-mode microsphere laser. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[23]  Joachim Knittel,et al.  Detection of nanoparticles with a frequency locked whispering gallery mode microresonator , 2013, 1303.1174.

[24]  Zach DeVito,et al.  Opt , 2017 .

[25]  Kebin Shi,et al.  Single nanoparticle detection using split-mode microcavity Raman lasers , 2014, Proceedings of the National Academy of Sciences.

[26]  K. Vahala,et al.  Loss characterization in micro-cavities using the thermal bistability effect , 2004, Digest of the LEOS Summer Topical Meetings Biophotonics/Optical Interconnects and VLSI Photonics/WBM Microcavities, 2004..

[27]  R. Fagaly Superconducting quantum interference device instruments and applications , 2006 .

[28]  Florian Sedlmeir,et al.  High-Q MgF₂ whispering gallery mode resonators for refractometric sensing in aqueous environment. , 2014, Optics express.

[29]  V. Kolchenko,et al.  Molecular weight dependence of a whispering gallery mode biosensor , 2005 .

[30]  O. Arcizet,et al.  Ultralow dissipation optomechanical resonators on a chip , 2008, CLEO/Europe - EQEC 2009 - European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference.

[31]  A. C. Maloof,et al.  Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer , 2009, 0910.2206.

[32]  Gardiner,et al.  Stability and switching in whispering-gallery-mode microdisk lasers. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[33]  Nano-Kelvin thermometry and temperature control: beyond the thermal noise limit. , 2014, Physical review letters.

[34]  Lute Maleki,et al.  Ringdown spectroscopy of stimulated Raman scattering in a whispering gallery mode resonator. , 2007, Optics letters.

[35]  L Larger,et al.  Magnesium Fluoride Whispering Gallery Mode Disk-Resonators for Microwave Photonics Applications , 2010, IEEE Photonics Technology Letters.

[36]  Lan Yang,et al.  Tunable add-drop filter using an active whispering gallery mode microcavity , 2013, 1308.6787.

[37]  Jeffrey D. Phillips,et al.  75th Anniversary: The historical development of the magnetic method in explorationHistorical Development of Magnetic Method , 2005 .