A natural biogenic nanozyme for scavenging superoxide radicals

[1]  M. Cuéllar-Cruz,et al.  The formation of crystalline minerals and their role in the origin of life on Earth , 2022, Progress in Crystal Growth and Characterization of Materials.

[2]  G. Gadd,et al.  Fungal-Mineral Interactions Modulating Intrinsic Peroxidase-like Activity of Iron Nanoparticles: Implications for the Biogeochemical Cycles of Nutrient Elements and Attenuation of Contaminants. , 2021, Environmental science & technology.

[3]  Liang Yan,et al.  Accelerated discovery of superoxide-dismutase nanozymes via high-throughput computational screening , 2021, Nature Communications.

[4]  S. Dong,et al.  Glucose-oxidase like catalytic mechanism of noble metal nanozymes , 2021, Nature Communications.

[5]  L. Warr IMA–CNMNC approved mineral symbols , 2021, Mineralogical Magazine.

[6]  Qinghua Zhang,et al.  Matching the kinetics of natural enzymes with a single-atom iron nanozyme , 2021, Nature Catalysis.

[7]  Bingbing Sun,et al.  A modified pCas/pTargetF system for CRISPR-Cas9-assisted genome editing in Escherichia coli. , 2021, Acta biochimica et biophysica Sinica.

[8]  Namrata Singh,et al.  Cerium vanadate nanozyme with specific superoxide dismutase activity regulates mitochondrial function and ATP synthesis in neuronal cells. , 2020, Angewandte Chemie.

[9]  Y. Orikasa,et al.  Noncrystalline Nanocomposites as a Remedy for the Low Diffusivity of Multivalent Ions in Battery Cathodes , 2020 .

[10]  Xiyun Yan,et al.  Ferritin drug carrier (FDC) for tumor targeting therapy. , 2019, Journal of controlled release : official journal of the Controlled Release Society.

[11]  Lizeng Gao,et al.  In vivo guiding nitrogen-doped carbon nanozyme for tumor catalytic therapy , 2018, Nature Communications.

[12]  Mario Rivera,et al.  Bacterioferritin: Structure, Dynamics, and Protein–Protein Interactions at Play in Iron Storage and Mobilization , 2017, Accounts of chemical research.

[13]  Xingfa Gao,et al.  Mechanisms of Oxidase and Superoxide Dismutation-like Activities of Gold, Silver, Platinum, and Palladium, and Their Alloys: A General Way to the Activation of Molecular Oxygen. , 2015, Journal of the American Chemical Society.

[14]  Changyou Chen,et al.  Magnetosomes extracted from Magnetospirillum magneticum strain AMB-1 showed enhanced peroxidase-like activity under visible-light irradiation. , 2015, Enzyme and microbial technology.

[15]  H. Lambers,et al.  Physiological and ecological significance of biomineralization in plants. , 2014, Trends in plant science.

[16]  W. Hagen,et al.  Phosphate accelerates displacement of Fe(III) by Fe(II) in the ferroxidase center of Pyrococcus furiosus ferritin , 2013, FEBS letters.

[17]  Fabio Nudelman,et al.  Biomineralization as an inspiration for materials chemistry. , 2012, Angewandte Chemie.

[18]  Dongling Yang,et al.  Magnetoferritin nanoparticles for targeting and visualizing tumour tissues. , 2012, Nature nanotechnology.

[19]  C. Grey,et al.  Phosphate adsorption on the iron oxyhydroxides goethite (α-FeOOH), akaganeite (β-FeOOH), and lepidocrocite (γ-FeOOH): a 31P NMR Study , 2011 .

[20]  Yuehe Lin,et al.  Enzyme-mimic activity of ferric nano-core residing in ferritin and its biosensing applications. , 2011, Analytical chemistry.

[21]  B. Woodfield,et al.  Ferritin iron mineralization proceeds by different mechanisms in MOPS and imidazole buffers. , 2011, Journal of inorganic biochemistry.

[22]  S. Andrews The Ferritin-like superfamily: Evolution of the biological iron storeman from a rubrerythrin-like ancestor. , 2010, Biochimica et biophysica acta.

[23]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[24]  M. Rivera,et al.  Structural studies of bacterioferritin B from Pseudomonas aeruginosa suggest a gating mechanism for iron uptake via the ferroxidase center . , 2010, Biochemistry.

[25]  J. Ferry,et al.  Mineral Evolution: Mineralogy in the Fourth Dimension , 2010 .

[26]  P. C. Joshi,et al.  Mechanism of montmorillonite catalysis in the formation of RNA oligomers. , 2009, Journal of the American Chemical Society.

[27]  G. Moore,et al.  Structural basis for iron mineralization by bacterioferritin. , 2009, Journal of the American Chemical Society.

[28]  Yu Zhang,et al.  Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. , 2007, Nature nanotechnology.

[29]  A. Papageorgiou,et al.  Iron incorporation in Streptococcus suis Dps-like peroxide resistance protein Dpr requires mobility in the ferroxidase center and leads to the formation of a ferrihydrite-like core. , 2006, Journal of molecular biology.

[30]  D. Sparks,et al.  Characterization and surface reactivity of ferrihydrite nanoparticles assembled in ferritin. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[31]  B. Wiedenheft,et al.  Structure of the DPS-like protein from Sulfolobus solfataricus reveals a bacterioferritin-like dimetal binding site within a DPS-like dodecameric assembly. , 2006, Biochemistry.

[32]  J. Mahy,et al.  Series of Mn Complexes Based on N‐Centered Ligands and Superoxide – Reactivity in an Anhydrous Medium and SOD‐Like Activity in an Aqueous Medium Correlated to MnII/MnIII Redox Potentials , 2005 .

[33]  M. Yeager,et al.  An archaeal antioxidant: characterization of a Dps-like protein from Sulfolobus solfataricus. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[34]  J. Ferris Mineral Catalysis and Prebiotic Synthesis: Montmorillonite-Catalyzed Formation of RNA , 2005 .

[35]  J. Crapo,et al.  Superoxide dismutases in malignant cells and human tumors. , 2004, Free radical biology & medicine.

[36]  D. Sholl,et al.  Chiral selection on inorganic crystalline surfaces , 2003, Nature materials.

[37]  K. Hodgson,et al.  A Multiplet Analysis of Fe K-Edge 1s → 3d Pre-Edge Features of Iron Complexes , 1997 .

[38]  G. Wächtershäuser,et al.  Activated acetic acid by carbon fixation on (Fe,Ni)S under primordial conditions. , 1997, Science.

[39]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[40]  L. Orgel,et al.  Synthesis of long prebiotic oligomers on mineral surfaces , 1996, Nature.

[41]  P. Harrison,et al.  Overproduction, purification and characterization of the Escherichia coli ferritin. , 1993, European journal of biochemistry.

[42]  P. Harrison,et al.  Overproduction, purification and characterization of the bacterioferritin of Escherichia coli and a C-terminally extended variant. , 1993, European journal of biochemistry.

[43]  R. Frankel,et al.  Role of phosphate in Fe2+ binding to horse spleen holoferritin. , 1993, Biochemistry.

[44]  Y G Cheng,et al.  Role of phosphate in initial iron deposition in apoferritin. , 1991, Biochemistry.

[45]  Elizabeth C. Theil,et al.  Iron environment in ferritin with large amounts of phosphate, from Azotobacter vinelandii and horse spleen, analyzed using extended X-ray absorption fine structure (EXAFS). , 1990, Biochemistry.

[46]  A. Swaak,et al.  Superoxide-dependent and -independent mechanisms of iron mobilization from ferritin by xanthine oxidase. Implications for oxygen-free-radical-induced tissue destruction during ischaemia and inflammation. , 1986, The Biochemical journal.

[47]  R. Frankel,et al.  Redox properties and Moessbauer spectroscopy of Azotobacter vinelandii bacterioferritin , 1986 .

[48]  J. V. Bannister,et al.  Structure and composition of ferritin cores isolated from human spleen, limpet (Patella vulgata) hemolymph and bacterial (Pseudomonas aeruginosa) cells. , 1986, Journal of molecular biology.

[49]  R. Frankel,et al.  Reduction of mammalian ferritin. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[50]  P. Harrison,et al.  Ferric Oxyhydroxide Core of Ferritin , 1967, Nature.

[51]  K. Towe,et al.  Mineralogical constitution of colloidal “hydrous ferric oxides” , 1967 .

[52]  Hazen,et al.  Review Paper. Mineral evolution , 2008 .