Quantum two- and three-person duels

In game theory, a popular model of a struggle for survival among three competing agents is a truel, or three-person generalization of a duel. Adopting the ideas recently developed in quantum game theory, we present a quantum scheme for the problems of duels and truels. In the classical case, the outcome is sensitive to the precise rules under which the truel is performed and can be counterintuitive. These aspects carry over into our quantum scheme, but interference amongst the players' strategies can arise, leading to game equilibria different from the classical case.

[1]  D. Kilgour The simultaneous truel , 1971 .

[2]  Azhar Iqbal,et al.  Evolutionarily stable strategies in quantum games , 2000 .

[3]  Neil F. Johnson,et al.  Exploiting randomness in quantum information processing , 2002 .

[4]  Luca Marinatto,et al.  A quantum approach to static games of complete information , 2000 .

[5]  D. Kilgour The Sequential Truel , 1975 .

[6]  E. W. Piotrowski,et al.  Quantum Market Games , 2001 .

[7]  Jiangfeng Du,et al.  Experimental realization of quantum games on a quantum computer. , 2001, Physical Review Letters.

[8]  P. Hayden,et al.  Comment on "quantum games and quantum strategies". , 2000, Physical Review Letters.

[9]  A. Pati Minimum classical bit for remote preparation and measurement of a qubit , 1999, quant-ph/9907022.

[10]  R. Werner,et al.  Optimal manipulations with qubits: Universal-NOT gate , 1999, quant-ph/9901053.

[11]  D. Abbott,et al.  Quantum version of the Monty Hall problem , 2001, quant-ph/0109035.

[12]  D. Abbott,et al.  Quantum Parrondo's games , 2002 .

[13]  J. Eisert,et al.  Quantum Games and Quantum Strategies , 1998, quant-ph/9806088.

[14]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[15]  Guang-Can Guo,et al.  Quantum strategies of quantum measurements , 2001 .

[16]  Howard E. Brandt,et al.  Qubit devices and the issue of quantum decoherence , 1999 .

[17]  General impossible operations in quantum information , 2001, quant-ph/0111153.

[18]  Masanori Ohya,et al.  Quantum information and computing , 2006 .

[19]  Simon C. Benjamin,et al.  Multiplayer quantum games , 2001 .

[20]  Derek Abbott,et al.  AN INTRODUCTION TO QUANTUM GAME THEORY , 2002 .

[21]  D. Meyer Quantum strategies , 1998, quant-ph/9804010.

[22]  Jens Eisert,et al.  Quantum games , 2020, Understanding Game Theory.

[23]  Giacomo Mauro D'Ariano,et al.  The quantum monty hall problem , 2002, Quantum Inf. Comput..

[24]  Leong Chuan Kwek,et al.  Quantum prisoner dilemma under decoherence , 2003 .

[25]  Neil F. Johnson Playing a quantum game with a corrupted source , 2001 .

[26]  Derek Abbott,et al.  A REVIEW OF PARRONDO'S PARADOX , 2002 .