暂无分享,去创建一个
Guanglian Li | Richard Craster | Shubin Fu | Sebastien Guenneau | R. Craster | S. Guenneau | Guanglian Li | Shubin Fu
[1] I. Babuska,et al. The design and analysis of the Generalized Finite Element Method , 2000 .
[2] Jens Markus Melenk,et al. Wavenumber Explicit Convergence Analysis for Galerkin Discretizations of the Helmholtz Equation , 2011, SIAM J. Numer. Anal..
[3] B. Engquist,et al. Sweeping preconditioner for the Helmholtz equation: Hierarchical matrix representation , 2010, 1007.4290.
[4] I. Babuska,et al. The partition of unity finite element method: Basic theory and applications , 1996 .
[5] R. V. Craster,et al. High-frequency homogenization for periodic media , 2010, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[6] S. Ramakrishna,et al. Physics and Applications of Negative Refractive Index Materials , 2008 .
[7] Daniel Peterseim,et al. Eliminating the pollution effect in Helmholtz problems by local subscale correction , 2014, Math. Comput..
[8] H. Chong,et al. Comprehensive FDTD modelling of photonic crystal waveguide components. , 2004, Optics express.
[9] Constance de Koning,et al. Editors , 2003, Annals of Emergency Medicine.
[10] Jens Markus Melenk,et al. General DG-Methods for Highly Indefinite Helmholtz Problems , 2013, J. Sci. Comput..
[11] Jean-Pierre Berenger,et al. A perfectly matched layer for the absorption of electromagnetic waves , 1994 .
[12] R. Craster,et al. Dynamic homogenisation of Maxwell's equations with applications to photonic crystals and localised waveforms on gratings , 2017 .
[13] H. Owhadi,et al. Flux Norm Approach to Finite Dimensional Homogenization Approximations with Non-Separated Scales and High Contrast , 2009, 0901.1463.
[14] Yalchin Efendiev,et al. Multiscale finite element methods for high-contrast problems using local spectral basis functions , 2011, J. Comput. Phys..
[15] Steven G. Johnson,et al. Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis. , 2001, Optics express.
[16] Guanglian Li,et al. Edge multiscale methods for elliptic problems with heterogeneous coefficients , 2018, J. Comput. Phys..
[17] Daniel Peterseim,et al. Computational high frequency scattering from high-contrast heterogeneous media , 2019, Math. Comput..
[18] Dennis W. Prather,et al. Self-collimation in photonic crystal structures: a new paradigm for applications and device development , 2007 .
[19] Gérard Tayeb,et al. Self-guiding in two-dimensional photonic crystals. , 2003, Optics express.
[20] Topological Photonics , 2014, 1408.6730.
[21] Guanglian Li,et al. Error analysis of a variational multiscale stabilization for convection-dominated diffusion equations in two dimensions , 2018 .
[22] E Weinan,et al. The heterogeneous multiscale method* , 2012, Acta Numerica.
[23] Thomas Y. Hou,et al. A Multiscale Finite Element Method for Elliptic Problems in Composite Materials and Porous Media , 1997 .
[24] A. Gabriel. Editor , 2018, Best "New" African Poets 2018 Anthology.
[25] C. Tsogka,et al. Application of the perfectly matched absorbing layer model to the linear elastodynamic problem in anisotropic heterogeneous media , 2001 .
[26] M. Soljačić,et al. Topological photonics , 2014, Nature Photonics.
[27] Guanglian Li,et al. On the Convergence Rates of GMsFEMs for Heterogeneous Elliptic Problems Without Oversampling Techniques , 2018, Multiscale Model. Simul..
[28] R. Craster,et al. Acoustic flat lensing using an indefinite medium , 2018, Physical Review B.
[29] Ralf Hiptmair,et al. A Survey of Trefftz Methods for the Helmholtz Equation , 2015, 1506.04521.
[30] Yalchin Efendiev,et al. Generalized multiscale finite element methods (GMsFEM) , 2013, J. Comput. Phys..
[31] T. Hughes,et al. The variational multiscale method—a paradigm for computational mechanics , 1998 .
[32] Daniel Peterseim,et al. Localization of elliptic multiscale problems , 2011, Math. Comput..