Wavelet-based Edge Multiscale Finite Element Method for Helmholtz problems in perforated domains

We introduce a new efficient algorithm for Helmholtz problems in perforated domains with the design of the scheme allowing for possibly large wavenumbers. Our method is based upon the Wavelet-based Edge Multiscale Finite Element Method (WEMsFEM) as proposed recently in [14]. For a regular coarse mesh with mesh size H, we establish O(H) convergence of this algorithm under the resolution assumption, and with the level parameter being sufficiently large. The performance of the algorithm is demonstrated by extensive 2-dimensional numerical tests including those motivated by photonic crystals.

[1]  I. Babuska,et al.  The design and analysis of the Generalized Finite Element Method , 2000 .

[2]  Jens Markus Melenk,et al.  Wavenumber Explicit Convergence Analysis for Galerkin Discretizations of the Helmholtz Equation , 2011, SIAM J. Numer. Anal..

[3]  B. Engquist,et al.  Sweeping preconditioner for the Helmholtz equation: Hierarchical matrix representation , 2010, 1007.4290.

[4]  I. Babuska,et al.  The partition of unity finite element method: Basic theory and applications , 1996 .

[5]  R. V. Craster,et al.  High-frequency homogenization for periodic media , 2010, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[6]  S. Ramakrishna,et al.  Physics and Applications of Negative Refractive Index Materials , 2008 .

[7]  Daniel Peterseim,et al.  Eliminating the pollution effect in Helmholtz problems by local subscale correction , 2014, Math. Comput..

[8]  H. Chong,et al.  Comprehensive FDTD modelling of photonic crystal waveguide components. , 2004, Optics express.

[9]  Constance de Koning,et al.  Editors , 2003, Annals of Emergency Medicine.

[10]  Jens Markus Melenk,et al.  General DG-Methods for Highly Indefinite Helmholtz Problems , 2013, J. Sci. Comput..

[11]  Jean-Pierre Berenger,et al.  A perfectly matched layer for the absorption of electromagnetic waves , 1994 .

[12]  R. Craster,et al.  Dynamic homogenisation of Maxwell's equations with applications to photonic crystals and localised waveforms on gratings , 2017 .

[13]  H. Owhadi,et al.  Flux Norm Approach to Finite Dimensional Homogenization Approximations with Non-Separated Scales and High Contrast , 2009, 0901.1463.

[14]  Yalchin Efendiev,et al.  Multiscale finite element methods for high-contrast problems using local spectral basis functions , 2011, J. Comput. Phys..

[15]  Steven G. Johnson,et al.  Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis. , 2001, Optics express.

[16]  Guanglian Li,et al.  Edge multiscale methods for elliptic problems with heterogeneous coefficients , 2018, J. Comput. Phys..

[17]  Daniel Peterseim,et al.  Computational high frequency scattering from high-contrast heterogeneous media , 2019, Math. Comput..

[18]  Dennis W. Prather,et al.  Self-collimation in photonic crystal structures: a new paradigm for applications and device development , 2007 .

[19]  Gérard Tayeb,et al.  Self-guiding in two-dimensional photonic crystals. , 2003, Optics express.

[20]  Topological Photonics , 2014, 1408.6730.

[21]  Guanglian Li,et al.  Error analysis of a variational multiscale stabilization for convection-dominated diffusion equations in two dimensions , 2018 .

[22]  E Weinan,et al.  The heterogeneous multiscale method* , 2012, Acta Numerica.

[23]  Thomas Y. Hou,et al.  A Multiscale Finite Element Method for Elliptic Problems in Composite Materials and Porous Media , 1997 .

[24]  A. Gabriel Editor , 2018, Best "New" African Poets 2018 Anthology.

[25]  C. Tsogka,et al.  Application of the perfectly matched absorbing layer model to the linear elastodynamic problem in anisotropic heterogeneous media , 2001 .

[26]  M. Soljačić,et al.  Topological photonics , 2014, Nature Photonics.

[27]  Guanglian Li,et al.  On the Convergence Rates of GMsFEMs for Heterogeneous Elliptic Problems Without Oversampling Techniques , 2018, Multiscale Model. Simul..

[28]  R. Craster,et al.  Acoustic flat lensing using an indefinite medium , 2018, Physical Review B.

[29]  Ralf Hiptmair,et al.  A Survey of Trefftz Methods for the Helmholtz Equation , 2015, 1506.04521.

[30]  Yalchin Efendiev,et al.  Generalized multiscale finite element methods (GMsFEM) , 2013, J. Comput. Phys..

[31]  T. Hughes,et al.  The variational multiscale method—a paradigm for computational mechanics , 1998 .

[32]  Daniel Peterseim,et al.  Localization of elliptic multiscale problems , 2011, Math. Comput..