Pressure evolution of electronic structure and magnetism in the layered van der Waals ferromagnet CrGeTe3

Layered van der Waals ferromagnets, which preserve their magnetic properties down to exfoliated monolayers, are fueling an abundance of fundamental research and nanoscale device demonstration. CrGeTe$_3$ is a prime example for this class of materials. Its temperature-pressure phase diagram features an insulator-to-metal transition and a significant increase of ferromagnetic Curie-Weiss temperatures upon entering the metallic state. We use density functional theory to understand the magnetic exchange interactions in CrGeTe$_3$ at ambient and elevated pressure. We calculate Heisenberg exchange couplings, which provide the correct ferromagnetic ground state and explain the experimentally observed pressure dependence of magnetism in CrGeTe$_3$. Furthermore, we combine density functional theory with dynamical mean field theory to investigate the effects of electronic correlations and the nature of the high pressure metallic state in CrGeTe$_3$.

[1]  H. Jeschke,et al.  CrRhAs: a member of a large family of metallic kagome antiferromagnets , 2022, npj Quantum Materials.

[2]  K. Yoshimi,et al.  Multipolar ordering from dynamical mean field theory with application to CeB6 , 2022, Physical Review B.

[3]  T. Hesjedal,et al.  Covalent Mixing in the 2D Ferromagnet CrSiTe3 Evidenced by Magnetic X‐Ray Circular Dichroism , 2021, physica status solidi (RRL) – Rapid Research Letters.

[4]  T. U. Dresden,et al.  Symmetry-conserving maximally projected Wannier functions , 2021, Physical Review B.

[5]  Wenqing Liu,et al.  Probing the atomic-scale ferromagnetism in van der Waals magnet CrSiTe3 , 2021, Applied Physics Letters.

[6]  H. Takagi,et al.  Nearly Room-Temperature Ferromagnetism in a Pressure-Induced Correlated Metallic State of the van der Waals Insulator CrGeTe_{3}. , 2021, Physical review letters.

[7]  M. L. Van de Put,et al.  Computing Curie temperature of two-dimensional ferromagnets in the presence of exchange anisotropy , 2021, Physical Review Research.

[8]  Ying Fu,et al.  Pressure-Enhanced Ferromagnetism in Layered CrSiTe3 Flakes. , 2021, Nano letters.

[9]  A. Kolobov,et al.  Dimensional transformation of chemical bonding during crystallization in a layered chalcogenide material , 2021, Scientific Reports.

[10]  A. Wolter,et al.  Pressure control of the magnetic anisotropy of the quasi-two-dimensional van der Waals ferromagnet Cr2Ge2Te6 , 2021 .

[11]  Mengqiu Long,et al.  Paramagnetic phases of two-dimensional magnetic materials , 2020 .

[12]  Y. Liu,et al.  Pressure-induced superconductivity and structural transition in ferromagnetic CrSiTe3 , 2020, Physical Review B.

[13]  M. Kawamura,et al.  DCore: Integrated DMFT software for correlated electrons , 2020, SciPost Physics.

[14]  X. Miao,et al.  Unique 2D–3D Structure Transformations in Trichalcogenide CrSiTe3 under High Pressure , 2020, The Journal of Physical Chemistry C.

[15]  K. Jacobsen,et al.  High-throughput computational screening for two-dimensional magnetic materials based on experimental databases of three-dimensional compounds , 2020, npj Computational Materials.

[16]  T. Kotani,et al.  Role of nonlocality in exchange correlation for magnetic two-dimensional van der Waals materials , 2020, Physical Review B.

[17]  G. Eda,et al.  Controlling the magnetic anisotropy in Cr2Ge2Te6 by electrostatic gating , 2020, Nature Electronics.

[18]  Timur K. Kim,et al.  Direct observation of the energy gain underpinning ferromagnetic superexchange in the electronic structure ofCrGeTe3 , 2019, Physical Review B.

[19]  Huaibao Tang,et al.  Transition from ferromagnetic semiconductor to ferromagnetic metal with enhanced Curie temperature in Cr2Ge2Te6 via organic ion intercalation. , 2019, Journal of the American Chemical Society.

[20]  Yanfeng Guo,et al.  Unveiling Electronic Correlation and the Ferromagnetic Superexchange Mechanism in the van der Waals Crystal CrSiTe_{3}. , 2019, Physical review letters.

[21]  X. Miao,et al.  Pressure-Induced Structural Phase Transition and a Special Amorphization Phase of Two-Dimensional Ferromagnetic Semiconductor Cr2Ge2Te6 , 2019, The Journal of Physical Chemistry C.

[22]  H. Jeschke,et al.  Breathing chromium spinels: a showcase for a variety of pyrochlore Heisenberg Hamiltonians , 2019, npj Quantum Materials.

[23]  Xiang Zhang,et al.  Two-dimensional magnetic crystals and emergent heterostructure devices , 2019, Science.

[24]  D. Mandrus,et al.  Magnetism in two-dimensional van der Waals materials , 2018, Nature.

[25]  Seungjin Kang,et al.  Coulomb-interaction effect on the two-dimensional electronic structure of the van der Waals ferromagnet Cr2Ge2Te6 , 2018, Physical Review B.

[26]  Y. Tokura,et al.  Ferromagnetic insulator Cr2Ge2Te6 thin films with perpendicular remanence , 2018, APL Materials.

[27]  G. Guo,et al.  Large magneto-optical effects and magnetic anisotropy energy in two-dimensional Cr2Ge2Te6 , 2018, Physical Review B.

[28]  Jaejun Yu,et al.  Effect of Coulomb Interactions on the Electronic and Magnetic Properties of Two-Dimensional CrSiTe3 and CrGeTe3 Materials , 2018, Journal of Electronic Materials.

[29]  C. Petrovic,et al.  Evidence of spin-phonon coupling in CrSiTe3 , 2018, Physical Review B.

[30]  Xiang Zhang Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals , 2018 .

[31]  Yuanbo Zhang,et al.  Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2 , 2018, Nature.

[32]  Jie Shan,et al.  Controlling magnetism in 2D CrI3 by electrostatic doping , 2018, Nature Nanotechnology.

[33]  Michael A. McGuire,et al.  Electrical control of 2D magnetism in bilayer CrI3 , 2018, Nature Nanotechnology.

[34]  Hanwen Wang,et al.  Electric-field control of magnetism in a few-layered van der Waals ferromagnetic semiconductor , 2018, Nature Nanotechnology.

[35]  Daisuke Ando,et al.  Inverse Resistance Change Cr2Ge2Te6-Based PCRAM Enabling Ultralow-Energy Amorphization. , 2018, ACS Applied Materials and Interfaces.

[36]  D. Chateigner,et al.  Layered tellurides: stacking faults induce low thermal conductivity in the new In2Ge2Te6 and thermoelectric properties of related compounds , 2017 .

[37]  C. Petrovic,et al.  Critical behavior of quasi-two-dimensional semiconducting ferromagnet Cr 2 Ge 2 Te 6 , 2017, 1706.07324.

[38]  Z. Sheng,et al.  Tricritical behavior of the two-dimensional intrinsically ferromagnetic semiconductor CrGeTe 3 , 2017, 1706.03239.

[39]  H. Jeschke,et al.  Signatures of a gearwheel quantum spin liquid in a spin- 12 pyrochlore molybdate Heisenberg antiferromagnet , 2017, 1705.05291.

[40]  J. Fern'andez-Rossier,et al.  On the origin of magnetic anisotropy in two dimensional CrI3 , 2017, 1704.03849.

[41]  Michael A. McGuire,et al.  Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit , 2017, Nature.

[42]  S. Louie,et al.  Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals , 2017, Nature.

[43]  C. Franchini,et al.  Anisotropy of magnetic interactions and symmetry of the order parameter in unconventional superconductor Sr2RuO4 , 2017, 1702.03784.

[44]  Shiming Zhou,et al.  Critical behavior of the quasi-two-dimensional semiconducting ferromagnet CrSiTe3 , 2016, Scientific Reports.

[45]  R. Valentí,et al.  Reduction of magnetic interlayer coupling in barlowite through isoelectronic substitution , 2016, 1605.08162.

[46]  C. Uher,et al.  Cr2Ge2Te6: High Thermoelectric Performance from Layered Structure with High Symmetry , 2016 .

[47]  Xiaoyu Deng,et al.  TRIQS/DFTTools: A TRIQS application for ab initio calculations of correlated materials , 2015, Comput. Phys. Commun..

[48]  Paul R. C. Kent,et al.  Computational discovery of ferromagnetic semiconducting single-layer CrSnTe 3 , 2015 .

[49]  Laura D. Casto,et al.  Strong spin-lattice coupling in CrSiTe3 , 2015 .

[50]  M. Stone,et al.  Magnetic correlations in the quasi-two-dimensional semiconducting ferromagnet CrSiTe3 , 2015, 1503.08199.

[51]  Robert H. Swendsen,et al.  Magnetic ground state of semiconducting transition-metal trichalcogenide monolayers , 2015, 1503.00412.

[52]  Brian C. Sales,et al.  Coupling of Crystal Structure and Magnetism in the Layered, Ferromagnetic Insulator CrI3 , 2015 .

[53]  Jinlong Yang,et al.  CrXTe3 (X = Si, Ge) nanosheets: two dimensional intrinsic ferromagnetic semiconductors , 2014 .

[54]  R. A. Stokes,et al.  A ferromagnetic insulating substrate for the epitaxial growth of topological insulators , 2013 .

[55]  R. Valentí,et al.  First-principles determination of Heisenberg Hamiltonian parameters for the spin-(1)/(2) kagome antiferromagnet ZnCu 3 (OH) 6 Cl 2 , 2013, 1303.1310.

[56]  A. Tremblay,et al.  Benchmark of a modified iterated perturbation theory approach on the fcc lattice at strong coupling , 2012, 1202.5814.

[57]  M. Troyer,et al.  Continuous-time Monte Carlo methods for quantum impurity models , 2010, 1012.4474.

[58]  Stefano Curtarolo,et al.  High-throughput electronic band structure calculations: Challenges and tools , 2010, 1004.2974.

[59]  K. Koepernik,et al.  Tight-binding models for the iron-based superconductors , 2009, 0905.4844.

[60]  Matthias Troyer,et al.  Continuous-time solver for quantum impurity models. , 2005, Physical review letters.

[61]  C. Marianetti,et al.  Electronic structure calculations with dynamical mean-field theory , 2005, cond-mat/0511085.

[62]  H. Takayama,et al.  Néel temperature of quasi-low-dimensional Heisenberg antiferromagnets. , 2003, Physical review letters.

[63]  B. V. Costa,et al.  Phase diagrams of a two-dimensional Heisenberg antiferromagnet with single-ion anisotropy , 2003 .

[64]  M. Katsnelson,et al.  Self-consistent spin-wave theory of layered Heisenberg magnets , 1999 .

[65]  Helmut Eschrig,et al.  FULL-POTENTIAL NONORTHOGONAL LOCAL-ORBITAL MINIMUM-BASIS BAND-STRUCTURE SCHEME , 1999 .

[66]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[67]  Fujimori,et al.  Electronic structure and orbital ordering in perovskite-type 3d transition-metal oxides studied by Hartree-Fock band-structure calculations. , 1996, Physical review. B, Condensed matter.

[68]  J. Zaanen,et al.  Density-functional theory and strong interactions: Orbital ordering in Mott-Hubbard insulators. , 1995, Physical review. B, Condensed matter.

[69]  F. Moussa,et al.  2D Ising-Like Ferromagnetic Behaviour for the Lamellar Cr2Si2Te6 Compound: A Neutron Scattering Investigation , 1995 .

[70]  G. Sawatzky,et al.  Density-functional theory and NiO photoemission spectra. , 1993, Physical review. B, Condensed matter.

[71]  G. Ouvrard,et al.  Magnetic structure of the new layered ferromagnetic chromium hexatellurosilicate Cr2Si2Te6 , 1991 .

[72]  R. E. Marsh The crystal structure of Cr2Si2Te6: Corrigendum , 1988 .

[73]  G. Ouvrard,et al.  Synthesis and crystal structure of a new layered phase: the chromium hexatellurosilicate Cr2Si2Te6 , 1988 .

[74]  H. J. Vidberg,et al.  Solving the Eliashberg equations by means ofN-point Padé approximants , 1977 .

[75]  Philip W. Anderson,et al.  Considerations on Double Exchange , 1955 .

[76]  Shik Shin,et al.  Anomalously large spin-dependent electron correlation in the nearly half-metallic ferromagnet CoS 2 , 2022 .

[77]  C. Petrovic,et al.  Critical behavior of quasi-two-dimensional semiconducting ferromagnet CrGeTe3 , 2021 .

[78]  B. Sorée,et al.  Critical behavior of the ferromagnets CrI 3 , CrBr 3 , and CrGeTe 3 and the antiferromagnet FeCl 2 : a detailed first-principles study Reference : , 2021 .

[79]  Kai Xiao,et al.  Ultrathin nanosheets of CrSiTe3: a semiconducting two-dimensional ferromagnetic material , 2016 .

[80]  W. Marsden I and J , 2012 .

[81]  W. Krauth,et al.  Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions , 1996 .

[82]  V. Carteaux,et al.  Crystallographic, magnetic and electronic structures of a new layered ferromagnetic compound Cr2Ge2Te6 , 1995 .

[83]  V. Carteaux,et al.  2D Ising-Like Ferromagnetic Behaviour for the Lamellar Cr2Si2Te6 Compound: A Neutron Scattering Investigation , 1995 .