The Astropy Project: Sustaining and Growing a Community-oriented Open-source Project and the Latest Major Release (v5.0) of the Core Package

The Astropy Project supports and fosters the development of open-source and openly developed Python packages that provide commonly needed functionality to the astronomical community. A key element of the Astropy Project is the core package astropy, which serves as the foundation for more specialized projects and packages. In this article, we summarize key features in the core package as of the recent major release, version 5.0, and provide major updates on the Project. We then discuss supporting a broader ecosystem of interoperable packages, including connections with several astronomical observatories and missions. We also revisit the future outlook of the Astropy Project and the current status of Learn Astropy. We conclude by raising and discussing the current and future challenges facing the Project.

Miguel de Val-Borro | W. M. Wood-Vasey | Gabriel I. Perren | Rohit R Patil | W. E. Kerzendorf | Aarya A. Patil | D. Muna | A. Price-Whelan | E. Rykoff | B. Weaver | W. Wood-Vasey | L. Singer | G. Hosseinzadeh | P. Yoachim | T. Jenness | A. Ginsburg | S. Guest | P. Greenfield | Nicholas Saunders | D. Shupe | E. Tollerud | T. Aldcroft | H. M. Gunther | S. Conseil | R. Fox | N. Dencheva | P. Lim | O. Streicher | K. Gordon | R. Handberg | D. Foreman-Mackey | G. Barentsen | B. Morris | A. Zonca | T. Erben | M. V. Kerkwijk | The Astropy Collaboration | B. SipHocz | M. Craig | L. Bradley | K. Cruz | M. Bachetti | M. Boquien | M. Cara | J. V. M. Cardoso | A. Donath | N. Earl | L. Ferreira | A. Groener | D. Homeier | N. Kern | M. Nothe | S. Pascual | J. Sabater | P. Sakurikar | A. Shih | J. Sick | S. Singanamalla | G. Tremblay | J. Dietrich | P. Williams | S. Gurovich | T. Pickering | Manodeep Sinha | E. Karamehmetoglu | J. Pascual-Granado | F. d’Eugenio | D. Taranu | K. Oman | A. Eigenbrot | J. Swinbank | T. Robitaille | A. Archibald | H. Devillepoix | L. Spitler | K. Conroy | C. Pacifici | D. Stansby | L. Corrales | J. Kalmbach | Jaime A Alvarado-Montes | Nathaniel Starkman | N. Freij | James Tocknell | C. Brasseur | T. J. Wilson | E. Koch | L. Schwardt | Shankar Kulumani | D. Cara | T. Rastogi | J. Maljaars | Benjamin Winkel | Robel Geda | Zac Hatfield-Dodds | R. O'Steen | Michaelann Kelley | B. R. Roulston | Shresth Verma | Yash Gondhalekar | Chenchen Zhang | S. V. Kooten | Jaladh Singhal | A. Sanghi | Shreya V. Bapat | Zhi-Fang Ma | A. B'odi | C. MacBride | E. Vaher | William B. Jamieson | B. Merry | Juanjo Baz'an | Manish Biswas | D. J. Burke | Robert M. Cross | Suyog Garg | Lauren Glattly | David Grant | Akeem Hart | Craig Jones | Prajwel Joseph | M. Kaluszy'nski | Antony Lee | Chun Ly | N. A. Murphy | H. Norman | Daniel F. Ryan | Jesús Salgado | V. Savchenko | Michael Seifert-Eckert | Anany Shrey Jain | G. Shukla | Chris Simpson | Jani vSumak | N. Tewary | Zlatan Vasovi'c | Rui Xue | R. O’Steen | J. Tocknell | B. Roulston | A. S. Jain | Y. Gondhalekar | Juanjo J. Baz'an | C. MacBride | M. Kerkwijk | M. Bachetti | J. Baz'an | P. Joseph | Ludwig Schwardt | Jaime A. Alvarado-Montes

[1]  B. Sicardy,et al.  SORA: Stellar Occultation Reduction and Analysis , 2022, 2201.01799.

[2]  Sebastian Wagner-Carena,et al.  lenstronomy II: A gravitational lensing software ecosystem , 2021, J. Open Source Softw..

[3]  Timothy D. Brandt,et al.  'exoplanet': Gradient-based probabilistic inference for exoplanet data & other astronomical time series , 2021, J. Open Source Softw..

[4]  Serge Guelton,et al.  Reducing the ecological impact of computing through education and Python compilers , 2021, Nature Astronomy.

[5]  Jaime Fern'andez del R'io,et al.  Array programming with NumPy , 2020, Nature.

[6]  Kevin Reardon,et al.  The SunPy Project: Open Source Development and Status of the Version 1.0 Core Package , 2020, The Astrophysical Journal.

[7]  Juan B. Cabral,et al.  Astroalign: A Python module for astronomical image registration , 2019, Astron. Comput..

[8]  Joel Nothman,et al.  SciPy 1.0-Fundamental Algorithms for Scientific Computing in Python , 2019, ArXiv.

[9]  R. B. Barreiro,et al.  Planck 2018 results , 2018, Astronomy & Astrophysics.

[10]  Michael Mommert,et al.  sbpy: A Python module for small-body planetary astronomy , 2019, J. Open Source Softw..

[11]  Umair Mateen Khan,et al.  Stingray: A Modern Python Library for Spectral Timing , 2019, J. Open Source Softw..

[12]  Brett M. Morris,et al.  astroquery: An Astronomical Web-querying Package in Python , 2019, The Astronomical Journal.

[13]  Jessie L. Dotson,et al.  Lightkurve: Kepler and TESS time series analysis in Python , 2018 .

[14]  V. Springel,et al.  The optical morphologies of galaxies in the IllustrisTNG simulation: a comparison to Pan-STARRS observations , 2018, Monthly Notices of the Royal Astronomical Society.

[15]  Pablo M. Granitto,et al.  From FATS to feets: Further improvements to an astronomical feature extraction tool based on machine learning , 2018, Astron. Comput..

[16]  Matteo Bachetti,et al.  HENDRICS: High ENergy Data Reduction Interface from the Command Shell , 2018 .

[17]  Adrian M. Price-Whelan,et al.  Binary Companions of Evolved Stars in APOGEE DR14: Search Method and Catalog of ∼5000 Companions , 2018, The Astronomical Journal.

[18]  Adam Amara,et al.  lenstronomy: Multi-purpose gravitational lens modelling software package , 2018, Physics of the Dark Universe.

[19]  Brett M. Morris,et al.  astroplan: An Open Source Observation Planning Package in Python , 2017, 1712.09631.

[20]  H. M. Gunther,et al.  MARXS: A Modular Software to Ray-trace X-Ray Instrumentation , 2017, 1710.05226.

[21]  Adrian M. Price-Whelan,et al.  Gala: A Python package for galactic dynamics , 2017, J. Open Source Softw..

[22]  Pablo M. Granitto,et al.  Corral Framework: Trustworthy and Fully Functional Data Intensive Parallel Astronomical Pipelines , 2017, Astron. Comput..

[23]  Andy R. Terrel,et al.  SymPy: Symbolic computing in Python , 2017, PeerJ Prepr..

[24]  John Salvatier,et al.  Probabilistic programming in Python using PyMC3 , 2016, PeerJ Comput. Sci..

[25]  Michael Droettboom,et al.  ASDF: A new data format for astronomy , 2015 .

[26]  C. A. Oxborrow,et al.  Planck2015 results , 2015, Astronomy & Astrophysics.

[27]  J. Bovy galpy: A python LIBRARY FOR GALACTIC DYNAMICS , 2014, 1412.3451.

[28]  Arnold H. Rots,et al.  Representations of time coordinates in FITS - Time and relative dimension in space , 2014, 1409.7583.

[29]  Doug Tody,et al.  PyVO: Python access to the Virtual Observatory , 2014 .

[30]  Prasanth H. Nair,et al.  Astropy: A community Python package for astronomy , 2013, 1307.6212.

[31]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[32]  T. Robitaille,et al.  APLpy: Astronomical Plotting Library in Python , 2012 .

[33]  Adam Ginsburg,et al.  PySpecKit: Python Spectroscopic Toolkit , 2011 .

[34]  Catherine Hohenkerk Standards of Fundamental Astronomy , 2011, Scholarpedia.

[35]  M. Norman,et al.  yt: A MULTI-CODE ANALYSIS TOOLKIT FOR ASTROPHYSICAL SIMULATION DATA , 2010, 1011.3514.

[36]  W. Dehnen,et al.  Local kinematics and the local standard of rest , 2009, 0912.3693.

[37]  Bartek Wilczynski,et al.  Biopython: freely available Python tools for computational molecular biology and bioinformatics , 2009, Bioinform..

[38]  M. Halpern,et al.  THEMICROWAVE ANISOTROPY PROBE (MAP )1 MISSION , 2003 .

[39]  Edward J. Wollack,et al.  Wilkinson Microwave Anisotropy Probe (WMAP) Three Year Results: Implications for Cosmology , 2006, astro-ph/0603449.

[40]  Edward J. Wollack,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Determination of Cosmological Parameters , 2003, astro-ph/0302209.