Mixed cell computation in Hom4PS-3

Abstract This article presents recent efforts in improving the efficiency and scalability of the mixed cell computation step in the context of the Polyhedral Homotopy method. Solving systems of polynomial equations is an important problem in applied mathematics. The Polyhedral Homotopy method is an important numerical method for this task. In this method, a necessary preprocessing step, known as the “mixed cell computation” problem has been the main bottleneck in the parallel efficiency and scalability. This article presents recent remarkable improvements in the parallel scalability of the algorithm that are applicable to a wide range of hardware architectures including multi-core systems, NUMA systems, computer clusters, and GPUs devices.

[1]  Tangan Gao,et al.  Algorithm 846: MixedVol: a software package for mixed-volume computation , 2005, TOMS.

[2]  F. Drexler Eine Methode zur berechnung sämtlicher Lösungen von Polynomgleichungssystemen , 1977 .

[3]  Maurice Herlihy,et al.  The Art of Multiprocessor Programming, Revised Reprint , 2012 .

[4]  Bernd Sturmfels,et al.  A polyhedral method for solving sparse polynomial systems , 1995 .

[5]  R. Moeckel,et al.  Finiteness of stationary configurations of the four-vortex problem , 2008 .

[6]  Jonathan D. Hauenstein,et al.  Numerical algebraic geometry: a new perspective on gauge and string theories , 2012, Journal of High Energy Physics.

[7]  Tien Yien Li,et al.  Numerical solution of multivariate polynomial systems by homotopy continuation methods , 1997, Acta Numerica.

[8]  Jan Verschelde,et al.  Algorithm 795: PHCpack: a general-purpose solver for polynomial systems by homotopy continuation , 1999, TOMS.

[9]  Layne T. Watson,et al.  Finding all isolated solutions to polynomial systems using HOMPACK , 1989, TOMS.

[10]  Thomas Kahle,et al.  Decompositions of binomial ideals , 2009, 0906.4873.

[11]  Vadim Kaloshin,et al.  Finiteness of central configurations of five bodies in the plane , 2012 .

[12]  Eecient Incremental Algorithms for the Sparse Resultant and the Mixed Volume , 1995 .

[13]  Frank Sottile,et al.  ALGORITHM XXX: ALPHACERTIFIED: CERTIFYING SOLUTIONS TO POLYNOMIAL SYSTEMS , 2011 .

[14]  A. Morgan Solving Polynomial Systems Using Continuation for Engineering and Scientific Problems , 1987 .

[15]  Xing Li,et al.  Finding Mixed Cells in the Mixed Volume Computation , 2001, Found. Comput. Math..

[16]  Charles W. Wampler,et al.  Multiprecision path tracking , 2006 .

[17]  Tien-Yien Li,et al.  HOM4PS-2.0para: Parallelization of HOM4PS-2.0 for solving polynomial systems , 2009, Parallel Comput..

[18]  E. Allgower,et al.  Introduction to Numerical Continuation Methods , 1987 .

[19]  A. Morgan,et al.  Coefficient-parameter polynomial continuation , 1989 .

[20]  Lajos Rónyai,et al.  Seven mutually touching infinite cylinders , 2013, Comput. Geom..

[21]  D. N. Bernshtein The number of roots of a system of equations , 1975 .

[22]  J. Robbin,et al.  Transversal mappings and flows , 2008 .

[23]  Akiko Takeda,et al.  Dynamic Enumeration of All Mixed Cells , 2007, Discret. Comput. Geom..

[24]  Akiko Takeda,et al.  DEMiCs: A Software Package for Computing the Mixed Volume Via Dynamic Enumeration of all Mixed Cells , 2008 .

[25]  Xiaoshen Wang,et al.  Finding All Isolated Zeros of Polynomial Systems inCnvia Stable Mixed Volumes , 1999, J. Symb. Comput..

[26]  Tien-Yien Li,et al.  SOLUTIONS TO SYSTEMS OF BINOMIAL EQUATIONS , 2014 .

[27]  Layne T. Watson,et al.  Algorithm 652: HOMPACK: a suite of codes for globally convergent homotopy algorithms , 1987, TOMS.

[28]  Konstantin Turitsyn,et al.  Numerical polynomial homotopy continuation method to locate all the power flow solutions , 2014, 1408.2732.

[29]  C. B. García,et al.  Finding all solutions to polynomial systems and other systems of equations , 1979, Math. Program..

[30]  E. Davison,et al.  The numerical solution of A'Q+QA =-C , 1968 .

[31]  Ronald Cools,et al.  Mixed-volume computation by dynamic lifting applied to polynomial system solving , 1996, Discret. Comput. Geom..

[32]  Yueh-Cheng Kuo,et al.  Determining dimension of the solution component that contains a computed zero of a polynomial system , 2008 .

[33]  Jonathan D. Hauenstein,et al.  An a posteriori certification algorithm for Newton homotopies , 2014, ISSAC.

[34]  Tien-Yien Li,et al.  Mixed Volume Computation for Semi-Mixed Systems , 2003, Discret. Comput. Geom..

[35]  Jonathan D. Hauenstein,et al.  What is numerical algebraic geometry , 2017 .

[36]  Jonathan D. Hauenstein,et al.  Numerically Solving Polynomial Systems with Bertini , 2013, Software, environments, tools.

[37]  Tien Yien Li,et al.  MIXED VOLUME COMPUTATION VIA LINEAR PROGRAMMING , 2000 .

[38]  J. Yorke,et al.  The cheater's homotopy: an efficient procedure for solving systems of polynomial equations , 1989 .

[39]  Akiko Takeda,et al.  PHoM – a Polyhedral Homotopy Continuation Method for Polynomial Systems , 2004, Computing.

[40]  Tien Yien Li,et al.  Spherical projective path tracking for homotopy continuation methods , 2012, Commun. Inf. Syst..

[41]  Dhagash Mehta,et al.  Numerical Polynomial Homotopy Continuation Method and String Vacua , 2011, 1108.1201.

[42]  Andrew J. Sommese,et al.  The numerical solution of systems of polynomials - arising in engineering and science , 2005 .

[43]  Akiko Takeda,et al.  ENUMERATION OF ALL SOLUTIONS OF A COMBINATORIAL LINEAR INEQUALITY SYSTEM ARISING FROM THE POLYHEDRAL HOMOTOPY CONTINUATION METHOD , 2002 .

[44]  Jonathan D. Hauenstein,et al.  Efficient path tracking methods , 2011, Numerical Algorithms.

[45]  Tsung-Lin Lee,et al.  HOM4PS-2.0: a software package for solving polynomial systems by the polyhedral homotopy continuation method , 2008, Computing.

[46]  Tien-Yien Li Numerical Solution of Polynomial Systems by Homotopy Continuation Methods , 2003 .

[47]  Dhagash Mehta,et al.  Finding all the stationary points of a potential-energy landscape via numerical polynomial-homotopy-continuation method. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[48]  D. Mehta,et al.  Lattice vs. Continuum: Landau Gauge Fixing and 't Hooft-Polyakov Monopoles , 2010 .

[49]  GIUSEPPE ATTARDI The Posso Library for Polynomial System Solving , 1995 .

[50]  Jonathan D. Hauenstein,et al.  Certifying solutions to square systems of polynomial-exponential equations , 2011, 1109.4547.

[51]  Jonathan D. Hauenstein,et al.  Stepsize control for path tracking , 2009 .

[52]  H. Helmholtz Über Integrale der hydrodynamischen Gleichungen, welche den Wirbelbewegungen entsprechen. , 1858 .

[53]  Jonathan D. Hauenstein,et al.  Numerical Algebraic Geometry: A New Perspective on String and Gauge Theories , 2012 .

[54]  Dhagash Mehta,et al.  Lattice Landau Gauge and Algebraic Geometry , 2009, 0912.0450.

[55]  Tsung-Lin Lee,et al.  Central configurations of the five-body problem with equal masses , 2009, 0906.0148.

[56]  Xiaoshen Wang,et al.  The BKK root count in Cn , 1996, Math. Comput..

[57]  Jonathan D. Hauenstein,et al.  Adaptive Multiprecision Path Tracking , 2008, SIAM J. Numer. Anal..

[58]  Tien Yien Li,et al.  MIXED VOLUME COMPUTATION IN PARALLEL , 2014 .

[59]  Anders Nedergaard Jensen,et al.  Finiteness of spatial central configurations in the five-body problem , 2011 .

[60]  D. M. Hutton,et al.  The Art of Multiprocessor Programming , 2008 .

[61]  A. Morgan A transformation to avoid solutions at infinity for polynomial systems , 1986 .

[62]  A. Morgan,et al.  Computing singular solutions to nonlinear analytic systems , 1990 .

[63]  G. Björck,et al.  A Faster Way to Count the Solution of Inhomogeneous Systems of Algebraic Equations, with Applications to Cyclic n-Roots , 1991, J. Symb. Comput..

[64]  Steven Skiena,et al.  The Algorithm Design Manual , 2020, Texts in Computer Science.

[65]  A. Morgan,et al.  A power series method for computing singular solutions to nonlinear analytic systems , 1992 .