Nonlinear Models for Longitudinal Data

Whereas marginal models, random-effects models, and conditional models are routinely considered to be the three main modeling families for continuous and discrete repeated measures with linear and generalized linear mean structures, respectively, it is less common to consider nonlinear models, let alone frame them within the above taxonomy. In the latter situation, indeed, when considered at all, the focus is often exclusively on random-effects models. In this article, we consider all three families, exemplify their great flexibility and relative ease of use, and apply them to a simple but illustrative set of data on tree circumference growth of orange trees. This article has supplementary material online.

[1]  John A. Nelder,et al.  Extended-REML estimators , 2003 .

[2]  Noel A Cressie,et al.  Statistics for Spatial Data. , 1992 .

[3]  Tapabrata Maiti,et al.  Analysis of Longitudinal Data (2nd ed.) (Book) , 2004 .

[4]  G. Molenberghs,et al.  Linear Mixed Models for Longitudinal Data , 2001 .

[5]  Enrique Castillo,et al.  Conditionally Specified Distributions , 1992 .

[6]  G. Molenberghs,et al.  Dynamic manganese-enhanced MRI signal intensity processing based on nonlinear mixed modeling to study changes in neuronal activity , 2005 .

[7]  P. Diggle,et al.  Analysis of Longitudinal Data , 2003 .

[8]  E. Vonesh,et al.  A note on the use of Laplace's approximation for nonlinear mixed-effects models , 1996 .

[9]  L. Skovgaard NONLINEAR MODELS FOR REPEATED MEASUREMENT DATA. , 1996 .

[10]  J. Nelder,et al.  Hierarchical generalised linear models: A synthesis of generalised linear models, random-effect models and structured dispersions , 2001 .

[11]  Donald Hedeker,et al.  Longitudinal Data Analysis , 2006 .

[12]  Dibyen Majumdar,et al.  Conditional Second-Order Generalized Estimating Equations for Generalized Linear and Nonlinear Mixed-Effects Models , 2002 .

[13]  N. Breslow,et al.  Approximate inference in generalized linear mixed models , 1993 .

[14]  V. Carey,et al.  Mixed-Effects Models in S and S-Plus , 2001 .

[15]  John A. Nelder,et al.  Conditional and Marginal Models: Another View , 2004 .

[16]  K. Liang,et al.  Asymptotic Properties of Maximum Likelihood Estimators and Likelihood Ratio Tests under Nonstandard Conditions , 1987 .

[17]  Annemarie van der Linden,et al.  Differential effects of testosterone on neuronal populations and their connections in a sensorimotor brain nucleus controlling song production in songbirds: a manganese enhanced-magnetic resonance imaging study , 2004, NeuroImage.

[18]  J. Nelder,et al.  Hierarchical Generalized Linear Models , 1996 .

[19]  Ana Ivelisse Avilés,et al.  Linear Mixed Models for Longitudinal Data , 2001, Technometrics.

[20]  G. Molenberghs,et al.  Likelihood Ratio, Score, and Wald Tests in a Constrained Parameter Space , 2007 .

[21]  S. Zeger,et al.  Longitudinal data analysis using generalized linear models , 1986 .

[22]  Maengseok Noh,et al.  Hierarchical-likelihood approach for nonlinear mixed-effects models , 2008, Comput. Stat. Data Anal..

[23]  Lewis B. Sheiner,et al.  Evaluation of methods for estimating population pharmacokinetic parameters. I. Michaelis-menten model: Routine clinical pharmacokinetic data , 1980, Journal of Pharmacokinetics and Biopharmaceutics.

[24]  D. Bates,et al.  Nonlinear mixed effects models for repeated measures data. , 1990, Biometrics.

[25]  N. Draper,et al.  Applied Regression Analysis , 1967 .

[26]  M. Verhoye,et al.  In vivo manganese-enhanced magnetic resonance imaging reveals connections and functional properties of the songbird vocal control system , 2002, Neuroscience.

[27]  G. Molenberghs,et al.  Models for Discrete Longitudinal Data , 2005 .

[28]  D. Stram,et al.  Variance components testing in the longitudinal mixed effects model. , 1994, Biometrics.

[29]  Geert Molenberghs,et al.  The Use of Score Tests for Inference on Variance Components , 2003, Biometrics.