Markov chains on hyperbolic-like groups and quasi-isometries
暂无分享,去创建一个
[1] Combination of convergence groups , 2002, math/0203258.
[2] D. Vere-Jones. Markov Chains , 1972, Nature.
[3] P. Couturier. Japan , 1988, The Lancet.
[4] G. Tiozzo,et al. Random walks on weakly hyperbolic groups , 2014, Journal für die reine und angewandte Mathematik (Crelles Journal).
[5] Denis V. Osin. Elementary Subgroups of Relatively Hyperbolic Groups and Bounded Generation , 2006, Int. J. Algebra Comput..
[6] Takuya Kon-no,et al. Transactions of the American Mathematical Society , 1996 .
[7] 8. , 2020, When Bad Things Happen to Rich People.
[8] D. Osin,et al. Correction to: Acylindrical hyperbolicity of groups acting on trees , 2018, Mathematische Annalen.
[9] M. Sapir,et al. Divergence in lattices in semisimple Lie groups and graphs of groups , 2008, 0801.4141.
[10] D. V. Osin. Relatively hyperbolic groups: Intrinsic geometry, algebraic properties, and algorithmic problems , 2004 .
[11] Kevin Whyte,et al. Amenability, bilipschitz equivalence, and the von Neumann conjecture , 1999 .
[12] A. Sisto,et al. Random subgroups of acylindrically hyperbolic groups and hyperbolic embeddings , 2017, 1701.00253.
[13] P. Mathieu,et al. Large deviations for random walks on hyperbolic spaces , 2020 .
[14] Jian Ding,et al. Sensitivity of mixing times , 2013 .
[15] Instability of the Liouville property for quasi-isometric graphs and manifolds of polynomial volume growth , 1991 .
[16] Geometriae Dedicata,et al. Geometriae Dedicata , 2003 .
[17] Samuel J. Taylor,et al. Counting loxodromics for hyperbolic actions , 2016, 1605.02103.
[18] C. Pittet,et al. On the stability of the behavior of random walks on groups , 2000 .
[19] STAT , 2019, Springer Reference Medizin.
[20] Combable functions, quasimorphisms, and the central limit theorem , 2008, Ergodic Theory and Dynamical Systems.
[21] B. M. Fulk. MATH , 1992 .
[22] D. Osin. Acylindrically hyperbolic groups , 2013, 1304.1246.
[23] K. Fujiwara,et al. Constructing group actions on quasi-trees and applications to mapping class groups , 2010, 1006.1939.
[24] Mahlon M. Day. Convolutions, means, and spectra , 1964 .
[25] Ilya Kapovich,et al. On hyperbolicity of free splitting and free factor complexes , 2012, 1206.3626.
[26] P. Zalesskii,et al. Profinite properties of graph manifolds , 2008, 0807.3727.
[27] G. Christopher Hruska,et al. Relative hyperbolicity and relative quasiconvexity for countable groups , 2008, 0801.4596.
[28] Samuel J. Taylor,et al. Largest projections for random walks and shortest curves in random mapping tori , 2016, Mathematical Research Letters.
[29] Bruce Kleiner,et al. Notes on Perelman's papers , 2006 .
[30] G. Perelman. Ricci flow with surgery on three-manifolds , 2003, math/0303109.
[31] M. Yamasaki,et al. Parabolic index and rough isometries , 1993 .
[32] Y. Peres,et al. On sensitivity of mixing times and cutoff , 2016, 1610.04357.
[33] Jason A. Behrstock. Asymptotic Geometry of the Mapping Class Group and Teichmuller Space , 2005, math/0502367.
[34] A. Sisto. Contracting elements and random walks , 2011, Journal für die reine und angewandte Mathematik (Crelles Journal).
[35] Jack W Drone. Means. , 2013, Journal.
[36] P. Scott,et al. The geometries of 3-manifolds , 1983 .
[37] Carolyn R. Abbott,et al. Random walks and quasi‐convexity in acylindrically hyperbolic groups , 2019, Journal of Topology.
[38] A. Sisto. Tracking rates of random walks , 2013, 1305.5472.
[39] D. Osin,et al. Acylindrical hyperbolicity of groups acting on trees , 2013, Mathematische Annalen.
[40] Matt Sunderland. Linear progress with exponential decay in weakly hyperbolic groups , 2017, 1710.05107.
[41] A. Minasyan. SOME PROPERTIES OF SUBSETS OF HYPERBOLIC GROUPS , 2004, math/0404473.
[42] M. Kapovich,et al. 3-manifold Groups and Nonpositive Curvature , 1998 .
[43] Jason A. Behrstock,et al. Divergence, thick groups, and short conjugators , 2011, 1110.5005.
[44] Mathematical Research Letters , 2022 .
[45] S. Gersten. Divergence in 3-manifold groups , 1994 .
[46] Harry Kesten,et al. Symmetric random walks on groups , 1959 .
[47] M. Kanai. Rough isometries and the parabolicity of riemannian manifolds , 1986 .
[48] S. Schleimer,et al. Quotients of the curve complex , 2020, Groups, Geometry, and Dynamics.
[49] Laurent Saloff-Coste,et al. Variétés riemanniennes isométriques à l'infini , 1995 .
[50] P. Mathieu,et al. Deviation inequalities for random walks , 2014 .
[51] K. Fujiwara,et al. Acylindrical actions on projection complexes , 2017, L’Enseignement Mathématique.
[52] Huai-Dong Cao,et al. A Complete Proof of the Poincaré and Geometrization Conjectures - application of the Hamilton-Perelman theory of the Ricci flow , 2006 .
[53] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[54] Divergence of Geodesics in Teichmüller Space and the Mapping Class Group , 2006, math/0611359.
[55] Matthew I. Roberts,et al. Mixing Time Bounds via Bottleneck Sequences , 2016, 1610.07874.
[56] G. Perelman. The entropy formula for the Ricci flow and its geometric applications , 2002, math/0211159.
[57] J. Morgan,et al. Ricci Flow and the Poincare Conjecture , 2006, math/0607607.
[58] R. Tennant. Algebra , 1941, Nature.
[59] D. Osin,et al. Hyperbolically embedded subgroups and rotating families in groups acting on hyperbolic spaces , 2011, 1111.7048.
[60] Susan Hermiller,et al. Algorithms and Geometry for Graph Products of Groups , 1995 .
[61] 藤原 耕二. Bounded cohomology of subgroups of mapping class groups (双曲空間及び離散群の研究 研究集会報告集) , 2001 .
[62] M. Bridson,et al. Metric Spaces of Non-Positive Curvature , 1999 .
[63] S'ebastien Gouezel. Exponential bounds for random walks on hyperbolic spaces without moment conditions , 2021 .