512QAM Nyquist sinc-pulse transmission at 54 Gbit/s in an optical bandwidth of 3 GHz.

We demonstrate for the first time transmission of 54 Gbit/s and 48 Gbit/s over 44 km and 150 km, respectively, utilizing an optical bandwidth of only 3 GHz. We used polarization division multiplexed 512QAM and 256QAM modulation formats in combination with Nyquist pulse shaping having virtually zero roll-off. The resulting spectral efficiencies range up to 18 bit/s/Hz and 16 bit/s/Hz, respectively. Taking into account the overhead required for forward error correction, the occupied signal bandwidth corresponds to net spectral efficiencies of 14.4 bit/s/Hz and 15 bit/s/Hz, which could be achieved in a wavelength division multiplexed network without spectral guard bands.

[1]  Harry Nyquist Certain Topics in Telegraph Transmission Theory , 1928 .

[2]  S. Personick Receiver design for digital fiber optic communication systems, II , 1973 .

[3]  Claude E. Shannon,et al.  The mathematical theory of communication , 1950 .

[4]  B. Zhu,et al.  8 450-Gb/s, 50-GHz-spaced, PDM-32QAM transmission over 400km and one 50GHz-grid ROADM , 2011, 2011 Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference.

[5]  W. Rosenkranz,et al.  Electrical dispersion compensation for different modulation formats with optical filtering , 2006, 2006 Optical Fiber Communication Conference and the National Fiber Optic Engineers Conference.

[6]  Y Tang,et al.  Coherent optical OFDM: theory and design. , 2008, Optics express.

[7]  N. S. Bergano Wavelength Division Multiplexing in Long-Haul Transmission Systems , 2004 .

[8]  P. Poggiolini,et al.  On the Performance of Nyquist-WDM Terabit Superchannels Based on PM-BPSK, PM-QPSK, PM-8QAM or PM-16QAM Subcarriers , 2011, Journal of Lightwave Technology.

[9]  Gabriella Bosco,et al.  Performance Limits of Nyquist-WDM and CO-OFDM in High-Speed PM-QPSK Systems , 2010, IEEE Photonics Technology Letters.

[10]  R Schmogrow,et al.  Real-time OFDM transmitter beyond 100 Gbit/s. , 2011, Optics express.

[11]  B. Szafraniec,et al.  Polarization demultiplexing in Stokes space. , 2010, Optics express.

[12]  P. Petropoulos,et al.  Single-laser 32.5 Tbit/s Nyquist-WDM , 2012, 2012 International Conference on Photonics in Switching (PS).

[13]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[14]  Lin Chen,et al.  Ultra-dense WDM-PON delivering carrier-centralized Nyquist-WDM uplink with digital coherent detection. , 2011, Optics express.

[15]  Keang-Po Ho,et al.  Error probability of DPSK signals with cross-phase modulation induced nonlinear phase noise , 2004 .

[16]  Abdullah S. Karar,et al.  Pulse shaping for 112 Gbit/s polarization multiplexed 16-QAM signals using a 21 GSa/s DAC , 2011 .

[17]  R Schmogrow,et al.  Real-time Nyquist pulse generation beyond 100 Gbit/s and its relation to OFDM. , 2012, Optics express.

[18]  T. Mizuochi,et al.  Recent progress in forward error correction and its interplay with transmission impairments , 2006, IEEE Journal of Selected Topics in Quantum Electronics.

[19]  P. Andrekson,et al.  Comparison of polarization-switched QPSK and polarization-multiplexed QPSK at 30 Gbit/s. , 2011, Optics express.

[20]  Masataka Nakazawa,et al.  512 QAM (54 Gbit/s) coherent optical transmission over 150 km with an optical bandwidth of 4.1 GHz , 2010, 36th European Conference and Exhibition on Optical Communication.

[21]  S. Stulz,et al.  High spectral density long-haul 40-Gb/s transmission using CSRZ-DPSK format , 2004, Journal of Lightwave Technology.

[22]  W. Freude,et al.  Fast split-step wavelet collocation method for WDM system parameter optimization , 2005, Journal of Lightwave Technology.

[23]  C. Koos,et al.  Nyquist frequency division multiplexing for optical communications , 2012, 2012 Conference on Lasers and Electro-Optics (CLEO).

[24]  N. S. Bergano Wavelength Division Multiplexing in Long-Haul Transmission Systems , 1996 .

[25]  Charles A. Brackett,et al.  Dense Wavelength Division Multiplexing Networks: Principles and Applications , 1990, IEEE J. Sel. Areas Commun..

[26]  M. Winter,et al.  Error Vector Magnitude as a Performance Measure for Advanced Modulation Formats , 2012, IEEE Photonics Technology Letters.

[27]  Kim B. Roberts,et al.  Electronic dispersion compensation techniques for optical communication systems , 2005 .