Pixelwise-adaptive blind optical flow assuming nonstationary statistics

We address some of the major issues in optical flow within a new framework assuming nonstationary statistics for the motion field and for the errors. Problems addressed include the preservation of discontinuities, model/data errors, outliers, confidence measures, and performance evaluation. In solving these problems, we assume that the statistics of the motion field and the errors are not only spatially varying, but also unknown. We, thus, derive a blind adaptive technique based on generalized cross validation for estimating an independent regularization parameter for each pixel. Our formulation is pixelwise and combines existing first- and second-order constraints with a new second-order temporal constraint. We derive a new confidence measure for an adaptive rejection of erroneous and outlying motion vectors, and compare our results to other techniques in the literature. A new performance measure is also derived for estimating the signal-to-noise ratio for real sequences when the ground truth is unknown.

[1]  Jong-Sen Lee,et al.  Digital Image Enhancement and Noise Filtering by Use of Local Statistics , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  Massimo Tistarelli,et al.  Multiple Constraints to Compute Optical Flow , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  Paolo Nesi,et al.  Variational approach to optical flow estimation managing discontinuities , 1993, Image Vis. Comput..

[4]  David J. Fleet,et al.  Performance of optical flow techniques , 1994, International Journal of Computer Vision.

[5]  William B. Thompson,et al.  Exploiting Discontinuities in Optical Flow , 1998, International Journal of Computer Vision.

[6]  Minas E. Spetsakis Optical Flow Estimation Using Discontinuity Conforming Filters , 1997, Comput. Vis. Image Underst..

[7]  R Chellappa,et al.  Noise-resilient estimation of optical flow by use of overlapped basis functions. , 1999, Journal of the Optical Society of America. A, Optics, image science, and vision.

[8]  Shahriar Negahdaripour,et al.  Motion recovery from image sequences using only first order optical flow information , 1992, International Journal of Computer Vision.

[9]  A. N. Tikhonov,et al.  Solutions of ill-posed problems , 1977 .

[10]  Todd R. Reed,et al.  On the Computation of Optical Flow using the 3-D Gabor Transform , 1998, Multidimens. Syst. Signal Process..

[11]  Patrick Pérez,et al.  Dense estimation and object-based segmentation of the optical flow with robust techniques , 1998, IEEE Trans. Image Process..

[12]  K. Miller Least Squares Methods for Ill-Posed Problems with a Prescribed Bound , 1970 .

[13]  Christoph Schnörr,et al.  Computation of discontinuous optical flow by domain decomposition and shape optimization , 1992, International Journal of Computer Vision.

[14]  Gérard G. Medioni,et al.  A graph-based global registration for 2D mosaics , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[15]  J. H. Duncan,et al.  On the Detection of Motion and the Computation of Optical Flow , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[16]  Michael J. Black,et al.  Estimating Optical Flow in Segmented Images Using Variable-Order Parametric Models With Local Deformations , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[17]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.

[18]  Isabelle Herlin,et al.  Non Uniform Multiresolution Method for Optical Flow and Phase Portrait Models: Environmental Applications , 2004, International Journal of Computer Vision.

[19]  Ioannis Pitas,et al.  Optical flow estimation and moving object segmentation based on median radial basis function network , 1998, IEEE Trans. Image Process..

[20]  Pierre Moulin,et al.  Application of a multiresolution optical-flow-based method for motion estimation to video coding , 1993, 1993 IEEE International Symposium on Circuits and Systems.

[21]  Carlo Colombo,et al.  Optical flow by nonlinear relaxation , 1995, Pattern Recognit..

[22]  Shang-Hong Lai,et al.  Reliable and Efficient Computation of Optical Flow , 1998, International Journal of Computer Vision.

[23]  Jitendra Malik,et al.  Robust computation of optical flow in a multi-scale differential framework , 2005, International Journal of Computer Vision.

[24]  Hans-Hellmut Nagel,et al.  Estimation of Optical Flow Based on Higher-Order Spatiotemporal Derivatives in Interlaced and Non-Interlaced Image Sequences , 1995, Artif. Intell..

[25]  Joachim Weickert,et al.  A Scale-Space Approach to Nonlocal Optical Flow Calculations , 1999, Scale-Space.

[26]  Shahriar Negahdaripour,et al.  Revised Definition of Optical Flow: Integration of Radiometric and Geometric Cues for Dynamic Scene Analysis , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[27]  A. Hero,et al.  Image registration using entropic graph-matching criteria , 2002, Conference Record of the Thirty-Sixth Asilomar Conference on Signals, Systems and Computers, 2002..

[28]  Michael Spann,et al.  Robust Optical Flow Computation Based on Least-Median-of-Squares Regression , 1999, International Journal of Computer Vision.

[29]  Richard G. Lane,et al.  Determining optical flow using a differential method , 1997, Image Vis. Comput..

[30]  Tien-Ren Tsao,et al.  A neural scheme for optical flow computation based on Gabor filters and generalized gradient method , 1994, Neurocomputing.

[31]  Takeo Kanade,et al.  Optical flow estimation using wavelet motion model , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[32]  Alberto Del Bimbo,et al.  Analysis of optical flow constraints , 1995, IEEE Trans. Image Process..

[33]  Hans-Hellmut Nagel,et al.  On the Estimation of Optical Flow: Relations between Different Approaches and Some New Results , 1987, Artif. Intell..

[34]  Shu Lin,et al.  An optical flow based motion compensation algorithm for very low bit-rate video coding , 1997, 1997 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[35]  C.-C. Jay Kuo,et al.  Computation of Dense Optical Flow with a Parametric Smoothness Model , 1993, J. Vis. Commun. Image Represent..

[36]  Patrick Bouthemy,et al.  Multimodal Estimation of Discontinuous Optical Flow using Markov Random Fields , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[37]  Stephen J. Maybank,et al.  Algorithm for analysing optical flow based on the least-squares method , 1986, Image Vis. Comput..

[38]  Myungcheol Lee,et al.  Graph theory for image analysis: an approach based on the shortest spanning tree , 1986 .

[39]  Vincent Torre,et al.  The Accuracy of the Computation of Optical Flow and of the Recovery of Motion Parameters , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[40]  Larry S. Davis,et al.  Temporal Multi-Scale Models for Flow and Acceleration , 2004, International Journal of Computer Vision.

[41]  Alberto Del Bimbo,et al.  Optical flow from constraint lines parametrization , 1993, Pattern Recognit..

[42]  Gene H. Golub,et al.  Generalized cross-validation as a method for choosing a good ridge parameter , 1979, Milestones in Matrix Computation.

[43]  Michael J. Black,et al.  A framework for the robust estimation of optical flow , 1993, 1993 (4th) International Conference on Computer Vision.

[44]  Eero P. Simoncelli Bayesian multi-scale differential optical flow , 1999 .

[45]  Jitendra Malik,et al.  Motion segmentation and tracking using normalized cuts , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[46]  Stephen J. Maybank Optical flow and the Taylor expansion , 1986, Pattern Recognit. Lett..

[47]  Michael J. Black,et al.  The outlier process: unifying line processes and robust statistics , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[48]  D J Heeger,et al.  Model for the extraction of image flow. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[49]  Michael Elad,et al.  Recursive Optical Flow Estimation - Adaptive Filtering Approach , 1998, J. Vis. Commun. Image Represent..

[50]  Harry Wechsler,et al.  Derivation of optical flow using a spatiotemporal-Frequency approach , 1987, Comput. Vis. Graph. Image Process..

[51]  Gary J. Balas,et al.  Optical flow: a curve evolution approach , 1995, Proceedings., International Conference on Image Processing.

[52]  G. Aubert,et al.  A mathematical study of the relaxed optical flow problem in the space BV (&Ω) , 1999 .

[53]  Keith Langley,et al.  Recursive Filters for Optical Flow , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[54]  Steven A. Shafer,et al.  Dense Structure from a Dense Optical Flow Sequence , 1998, Comput. Vis. Image Underst..

[55]  Hans-Hellmut Nagel,et al.  Optical flow estimation and the interaction between measurement errors at adjacent pixel positions , 1995, International Journal of Computer Vision.

[56]  Steven S. Beauchemin,et al.  The computation of optical flow , 1995, CSUR.

[57]  A. Verri,et al.  A computational approach to motion perception , 1988, Biological Cybernetics.

[58]  Takeo Kanade,et al.  Three-dimensional scene flow , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[59]  David Suter,et al.  Robust Optic Flow Computation , 1998, International Journal of Computer Vision.

[60]  P. Clarysse,et al.  Estimation du flot optique en présence de discontinuités : une revue , 1996 .

[61]  Harry Shum,et al.  Motion estimation with quadtree splines , 1995, Proceedings of IEEE International Conference on Computer Vision.

[62]  Alfred O. Hero,et al.  Image registration with minimum spanning tree algorithm , 2000, Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101).

[63]  Gif-sur-Yvette.,et al.  Scale Invariant Markov Models for Bayesian Inversion of Linear Inverse Problems , 2001, physics/0111124.

[64]  Steven K. Rogers,et al.  Discrete, spatiotemporal, wavelet multiresolution analysis method for computing optical flow , 1994 .

[65]  Sanjit K. Mitra,et al.  A local relaxation method for optical flow estimation , 1997, Signal Process. Image Commun..

[66]  Alessandro Verri,et al.  Against Quantitative Optical Flow , 1987 .

[67]  Jonathan W. Brandt,et al.  Improved Accuracy in Gradient-Based Optical Flow Estimation , 1997, International Journal of Computer Vision.

[68]  Steven D. Blostein,et al.  The Performance of Camera Translation Direction Estimators From Optical Flow: Analysis, Comparison, and Theoretical Limits , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[69]  N. P. Payne,et al.  Introduction to Matrices and Determinants , 1970 .

[70]  Subrata Rakshit,et al.  Computation of optical flow using basis functions , 1997, IEEE Trans. Image Process..