Predictive modelling of plankton dynamics in freshwater lakes using genetic programming

Building predictive time series models for freshwater systems is important both for understanding the dynamics of these natural systems and in the development of decision support and management software. This work describes the application of a machine learning technique, namely genetic programming (GP), to the prediction of chlorophyll-a. The system endeavoured to evolve several mathematical time series equations, based on limnological and climate variables, which could predict the dynamics of chlorophyll-a on unseen data. The predictive accuracy of the genetic programming approach was compared with an artificial neural network and a deterministic algal growth model. The GP system evolved some solutions which were improvements over the neural network and showed that the transparent nature of the solutions may allow inferences about underlying processes to be made. This work demonstrates that non-linear processes in natural systems may be successfully modelled through the use of machine learning techniques. Further, it shows that genetic programming may be used as a tool for exploring the driving processes underlying freshwater system dynamics.