A Broadband 900-GHz Silicon Micromachined Two-Anode Frequency Tripler

The design, fabrication, and measurement are presented for a 900-GHz frequency tripler with silicon micromachined blocks made using deep reactive ion etching. The broadband design results in more than 60 μW between 877.5-922.5 GHz and the peak output power of 85.3 μW in the frequency response, all measured at room temperature. In power sweep measurement, the tripler delivers the maximum power of 109.3 μW at 909 GHz. This is the first demonstration of a frequency tripler using silicon micromachining at these frequencies and suggests that this technology is a viable option for receiver arrays in the terahertz frequency range.

[1]  Peter H. Siegel,et al.  Nanoklystron: A Monolithic Tube Approach to THz Power Generation , 2001 .

[2]  I. Mehdi,et al.  A 540-640-GHz high-efficiency four-anode frequency tripler , 2005, IEEE Transactions on Microwave Theory and Techniques.

[3]  P. Siegel,et al.  THz semiconductor-based front-end receiver technology for space applications , 2004, Proceedings. 2004 IEEE Radio and Wireless Conference (IEEE Cat. No.04TH8746).

[4]  Paolo Antognetti,et al.  Semiconductor Device Modeling with Spice , 1988 .

[5]  R.M. Weikle,et al.  Opening the terahertz window with integrated diode circuits , 2005, IEEE Journal of Solid-State Circuits.

[6]  Ghassan Yassin,et al.  AN ACCURATE EXPRESSION FOR THE INPUT IMPEDANCES OF ONE-SIDED MICROSTRIP PROBES IN WAVEGUIDE , 1999 .

[7]  J. M. Chamberlain,et al.  Fabrication and characterization of micromachined rectangular waveguide components for use at millimeter-wave and terahertz frequencies , 2000 .

[8]  G. Kantorowicz,et al.  CHAPTER 4 – Backward Wave Oscillators , 1979 .

[9]  Qing Hu,et al.  Terahertz quantum-cascade laser at λ≈100 μm using metal waveguide for mode confinement , 2003 .

[10]  Alain Maestrini,et al.  A high efficiency multiple-anode 260-340 GHz frequency tripler , 2006 .

[11]  L.P.B. Katehi,et al.  Fully micromachined finite-ground coplanar line-to-waveguide transitions for W-band applications , 2004, IEEE Transactions on Microwave Theory and Techniques.

[12]  H. Eisele,et al.  Submillimeter-wave InP Gunn devices , 2004, IEEE Transactions on Microwave Theory and Techniques.

[13]  Jan Stake,et al.  11% efficiency 100 GHz InP-based heterostructure barrier varactor quintupler , 2005 .

[14]  Jane E. Curtin,et al.  Laser micromachining of silicon: a new technique for fabricating terahertz imaging arrays , 1998, Astronomical Telescopes and Instrumentation.

[15]  Y. Tai,et al.  Silicon micromachined waveguides for millimeter-wave and submillimeter-wave frequencies , 1993, IEEE Microwave and Guided Wave Letters.

[16]  Xun Gong,et al.  Laser-based polymer stereolithography of vertically integrated narrow bandpass filters operating in K band , 2004, 2004 IEEE MTT-S International Microwave Symposium Digest (IEEE Cat. No.04CH37535).

[17]  Neal R. Erickson,et al.  High efficiency MMIC frequency triplers for millimeter and submillimeter wavelengths , 2000, 2000 IEEE MTT-S International Microwave Symposium Digest (Cat. No.00CH37017).

[18]  B. Alderman,et al.  HBV tripler with 21% efficiency at 102 GHz , 2006 .

[19]  Yuan Li,et al.  Surface Micromachining Polymer-Core-Conductor Approach for High-Performance Millimeter-Wave Air-Cavity Filters Integration , 2008, IEEE Transactions on Microwave Theory and Techniques.

[20]  C. E. Collins,et al.  A new micro-machined millimeter-wave and terahertz snap-together rectangular waveguide technology , 1999 .

[21]  Choonsup Lee,et al.  A Frequency-Multiplied Source With More Than 1 mW of Power Across the 840–900-GHz Band , 2010, IEEE Transactions on Microwave Theory and Techniques.

[22]  Thomas W. Crowe,et al.  A micromachined 585 GHz Schottky mixer , 2000 .

[23]  L. Duvillaret,et al.  THz active devices and applications: a survey of recent researches , 2005, 2005 European Microwave Conference.

[24]  J. Ward,et al.  Machining of terahertz split-block waveguides with micrometer precision , 2008, 2008 33rd International Conference on Infrared, Millimeter and Terahertz Waves.

[25]  J. Papapolymerou,et al.  Silicon Micromachined W-Band Hybrid Coupler and Power Divider Using DRIE Technique , 2008, IEEE Microwave and Wireless Components Letters.

[26]  Ghassan Yassin,et al.  A Full-Height Waveguide to Thin-Film Microstrip Transition with Exceptional RF Bandwidth and Coupling Efficiency , 2003 .

[27]  Gabriel M. Rebeiz,et al.  Micromachining for terahertz applications , 1998 .

[28]  M.V. Lukic,et al.  Modeling of 3-D Surface Roughness Effects With Application to $\mu$-Coaxial Lines , 2007, IEEE Transactions on Microwave Theory and Techniques.

[29]  Robert M. Weikle,et al.  Analysis of an octagonal micromachined horn antenna for submillimeter-wave applications , 2001 .

[30]  Choonsup Lee,et al.  In-Phase Power-Combined Frequency Triplers at 300 GHz , 2008, IEEE Microwave and Wireless Components Letters.

[31]  R.M. Weikle,et al.  A 270-GHz Tuner-Less Heterostructure Barrier Varactor Frequency Tripler , 2007, IEEE Microwave and Wireless Components Letters.

[32]  J. Papapolymerou,et al.  Silicon Micromachined Multiplier Utilizing Heterostructure Barrier Varactor Diode , 2007, 2007 IEEE/MTT-S International Microwave Symposium.

[33]  G. Chattopadhyay,et al.  Deep Reactive Ion Etching based silicon micromachined components at terahertz frequencies for space applications , 2008, 2008 33rd International Conference on Infrared, Millimeter and Terahertz Waves.

[34]  N. D. Whyborn,et al.  The diagonal horn as a sub-millimeter wave antenna , 1992 .

[35]  THz Technology , 2022, 6G: The Next Horizon.

[36]  Peter H. Siegel,et al.  Radiometer-on-a-chip: a path toward super-compact submillimeter-wave imaging arrays , 2010, Defense + Commercial Sensing.

[37]  G. Beaudin,et al.  Fabrication and performance of InP-based heterostructure barrier varactors in a 250-GHz waveguide tripler , 2000 .

[38]  M. Feng,et al.  Experimental demonstration of pseudomorphic heterojunction bipolar transistors with cutoff frequencies above 600GHz , 2005 .

[39]  W.J. Chappell,et al.  Precision fabrication techniques and analysis on high-Q evanescent-mode resonators and filters of different geometries , 2004, IEEE Transactions on Microwave Theory and Techniques.

[40]  Mauro Mongiardo,et al.  E-plane steps in rectangular waveguide , 1991 .

[41]  Gabriel M. Rebeiz,et al.  Micromachined W-band filters , 1996 .

[42]  J. Papapolymerou,et al.  Power combining multiplier using HBV diodes at 260 GHz , 2008, 2008 Asia-Pacific Microwave Conference.

[43]  I. Mehdi,et al.  Fabrication of 200 to 2700 GHz multiplier devices using GaAs and metal membranes , 2001, 2001 IEEE MTT-S International Microwave Sympsoium Digest (Cat. No.01CH37157).