Carbon dioxide and climate impulse response functions for the computation of greenhouse gas metrics:a multi-model analysis

Abstract. The responses of carbon dioxide (CO2) and other climate variables to an emission pulse of CO2 into the atmosphere are often used to compute the Global Warming Potential (GWP) and Global Temperature change Potential (GTP), to characterize the response timescales of Earth System models, and to build reduced-form models. In this carbon cycle-climate model intercomparison project, which spans the full model hierarchy, we quantify responses to emission pulses of different magnitudes injected under different conditions. The CO2 response shows the known rapid decline in the first few decades followed by a millennium-scale tail. For a 100 Gt-C emission pulse added to a constant CO2 concentration of 389 ppm, 25 ± 9% is still found in the atmosphere after 1000 yr; the ocean has absorbed 59 ± 12% and the land the remainder (16 ± 14%). The response in global mean surface air temperature is an increase by 0.20 ± 0.12 °C within the first twenty years; thereafter and until year 1000, temperature decreases only slightly, whereas ocean heat content and sea level continue to rise. Our best estimate for the Absolute Global Warming Potential, given by the time-integrated response in CO2 at year 100 multiplied by its radiative efficiency, is 92.5 × 10−15 yr W m−2 per kg-CO2. This value very likely (5 to 95% confidence) lies within the range of (68 to 117) × 10−15 yr W m−2 per kg-CO2. Estimates for time-integrated response in CO2 published in the IPCC First, Second, and Fourth Assessment and our multi-model best estimate all agree within 15% during the first 100 yr. The integrated CO2 response, normalized by the pulse size, is lower for pre-industrial conditions, compared to present day, and lower for smaller pulses than larger pulses. In contrast, the response in temperature, sea level and ocean heat content is less sensitive to these choices. Although, choices in pulse size, background concentration, and model lead to uncertainties, the most important and subjective choice to determine AGWP of CO2 and GWP is the time horizon.

[1]  Martijn Gough Climate change , 2009, Canadian Medical Association Journal.

[2]  I. Prentice,et al.  Integrating peatlands and permafrost into a dynamic global vegetation model: 1. Evaluation and sensitivity of physical land surface processes , 2009 .

[3]  Timothy M. Lenton,et al.  An efficient numerical terrestrial scheme (ENTS) for Earth system modelling , 2006 .

[4]  Richard A. Feely,et al.  A global ocean carbon climatology: Results from Global Data Analysis Project (GLODAP) , 2004 .

[5]  Scott C. Doney,et al.  Impact of circulation on export production, dissolved organic matter, and dissolved oxygen in the ocean: Results from Phase II of the Ocean Carbon‐cycle Model Intercomparison Project (OCMIP‐2) , 2007 .

[6]  Richard Essery,et al.  Explicit representation of subgrid heterogeneity in a GCM land surface scheme , 2003 .

[7]  F. Joos,et al.  Deep ocean ventilation, carbon isotopes, marine sedimentation and the deglacial CO 2 rise , 2010 .

[8]  Ian G. Enting,et al.  Future emissions and concentrations of carbon dioxide: Key ocean / atmosphere / land analyses , 1994 .

[9]  G. Fischer,et al.  Simulating effects of land use changes on carbon fluxes: past contributions to atmospheric CO2 increases and future commitments due to losses of terrestrial sink capacity , 2008 .

[10]  C. Jones,et al.  Development and evaluation of an Earth-System model - HadGEM2 , 2011 .

[11]  N. Meinshausen,et al.  Warming caused by cumulative carbon emissions towards the trillionth tonne , 2009, Nature.

[12]  I. Totterdell,et al.  Production and export in a global ocean ecosystem model , 2001 .

[13]  J. Hargreaves,et al.  Regulation of atmospheric CO 2 by deep-sea sediments in an Earth system model , 2007 .

[14]  Fortunat Joos,et al.  Sensitivity of Holocene atmospheric CO 2 and the modern carbon budget to early human land use: analyses with a process-based model , 2010 .

[15]  Berrien Moore,et al.  The lifetime of excess atmospheric carbon dioxide , 1994 .

[16]  Michael J. Prather,et al.  Coupling of Nitrous Oxide and Methane by Global Atmospheric Chemistry , 2010, Science.

[17]  Mark Z. Jacobson,et al.  Correction to ''Control of fossil-fuel particulate black carbon and organic matter, possibly the most effective method of slowing global warming'' , 2005 .

[18]  Atul K. Jain,et al.  Tracking uncertainties in the causal chain from human activities to climate , 2009 .

[19]  V. Brovkin,et al.  Holocene carbon cycle dynamics , 2010 .

[20]  E. Maier‐Reimer,et al.  Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms , 2005, Nature.

[21]  F. Joos,et al.  A Coupled Dynamical Ocean–Energy Balance Atmosphere Model for Paleoclimate Studies , 2011 .

[22]  Ken Caldeira,et al.  Insensitivity of global warming potentials to carbon dioxide emission scenarios , 1993, Nature.

[23]  J. Lamarque,et al.  The HadGEM2-ES implementation of CMIP5 centennial simulations , 2011 .

[24]  J. Bongaarts,et al.  Climate Change: The IPCC Scientific Assessment. , 1992 .

[25]  Neil R. Edwards,et al.  On the Role of Topography and Wind Stress on the Stability of the Thermohaline Circulation , 1998 .

[26]  V. Brovkin,et al.  A continuous climate-vegetation classification for use in climate-biosphere studies , 1997 .

[27]  G. Peters,et al.  A synthesis of climate-based emission metrics with applications , 2012 .

[28]  William H. Press,et al.  Numerical recipes , 1990 .

[29]  T. Raddatz,et al.  Insufficient forcing uncertainty underestimates the risk of high climate sensitivity , 2009 .

[30]  T. Wigley,et al.  Emulating coupled atmosphere-ocean and carbon cycle models with a simpler model, MAGICC6 - Part 1: Model description and calibration , 2011 .

[31]  John P. Weyant,et al.  Overview of EMF-21: Multigas Mitigation and Climate Policy , 2006 .

[32]  M. Scholze,et al.  Constraining temperature variations over the last millennium by comparing simulated and observed atmospheric CO2 , 2003 .

[33]  Scott C. Doney,et al.  Natural Variability in a Stable, 1000-Yr Global Coupled Climate–Carbon Cycle Simulation , 2006 .

[34]  Joachim Segschneider,et al.  The HAMburg Ocean Carbon Cycle Model HAMOCC5.1 - Technical Description Release 1.1 , 2005 .

[35]  H. Oeschger,et al.  Biospheric CO2 emissions during the past 200 years reconstructed by deconvolution of ice core data , 1987 .

[36]  Christoph Heinze,et al.  A global oceanic sediment model for long‐term climate studies , 1999 .

[37]  Peter M. Cox,et al.  Description of the "TRIFFID" Dynamic Global Vegetation Model , 2001 .

[38]  G. Boer,et al.  The modification of greenhouse gas warming by the direct effect of sulphate aerosols , 1998 .

[39]  Victor Brovkin,et al.  Global biogeophysical interactions between forest and climate , 2009 .

[40]  Sensitivity of direct global warming potentials to key uncertainties , 1995 .

[41]  Jens Kattge,et al.  Will the tropical land biosphere dominate the climate–carbon cycle feedback during the twenty-first century? , 2007 .

[42]  Thomas F. Stocker,et al.  The Stability of the Thermohaline Circulation in Global Warming Experiments , 1999 .

[43]  Gian-Kasper Plattner,et al.  CO2 and non-CO2 radiative forcings in climate projections for twenty-first century mitigation scenarios , 2009 .

[44]  F. Joos,et al.  Impact of oceanic reorganizations on the ocean carbon cycle and atmospheric carbon dioxide content , 1998 .

[45]  F. Joos,et al.  The role of ocean transport in the uptake of anthropogenic CO2 , 2009 .

[46]  H. Oeschger,et al.  Predicting future atmospheric carbon dioxide levels. , 1978, Science.

[47]  Olivier Boucher,et al.  Climate trade-off between black carbon and carbon dioxide emissions , 2008 .

[48]  Andrei P. Sokolov,et al.  Long-Term climate change commitment and reversibility: An EMIC intercomparison , 2013 .

[49]  W. Lucht,et al.  Terrestrial vegetation and water balance-hydrological evaluation of a dynamic global vegetation model , 2004 .

[50]  Brian C. O'Neill,et al.  The Jury is Still Out on Global Warming Potentials , 2000 .

[51]  Daniel J.A. Johansson,et al.  Economics- and physical-based metrics for comparing greenhouse gases , 2011, Climatic Change.

[52]  K. Taylor,et al.  Forcing, feedbacks and climate sensitivity in CMIP5 coupled atmosphere‐ocean climate models , 2012 .

[53]  E. Stehfest,et al.  Harmonization of land-use scenarios for the period 1500–2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands , 2011 .

[54]  Michael J. Prather,et al.  Reactive greenhouse gas scenarios: Systematic exploration of uncertainties and the role of atmospheric chemistry , 2012 .

[55]  Gian-Kasper Plattner,et al.  Feedback mechanisms and sensitivities of ocean carbon uptake under global warming , 2001 .

[56]  James D. Annan,et al.  Marine geochemical data assimilation in an efficient Earth System Model of global biogeochemical cycling , 2006 .

[57]  R. Dickinson,et al.  Couplings between changes in the climate system and biogeochemistry , 2007 .

[58]  G. Myhre,et al.  New estimates of radiative forcing due to well mixed greenhouse gases , 1998 .

[59]  Robert Sausen,et al.  Transport impacts on atmosphere and climate , 2010 .

[60]  J. Houghton,et al.  Climate change 1995: the science of climate change. , 1996 .

[61]  R. Schnur,et al.  Climate-carbon cycle feedback analysis: Results from the C , 2006 .

[62]  Malte Meinshausen,et al.  Future changes in global warming potentials under representative concentration pathways , 2011 .

[63]  Keith P. Shine,et al.  The global warming potential—the need for an interdisciplinary retrial , 2009 .

[64]  Michael Obersteiner,et al.  Evaluating Global Warming Potentials with historical temperature , 2009 .

[65]  Victor Brovkin,et al.  Carbon cycle, vegetation, and climate dynamics in the Holocene: Experiments with the CLIMBER‐2 model , 2002 .

[66]  M. Prather Lifetimes and time scales in atmospheric chemistry , 2007, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[67]  F. Joos,et al.  Feedback mechanisms and sensitivities of ocean carbon uptake under global warming: Ocean carbon uptake , 2001 .

[68]  S. E. Schwartz,et al.  International Union of Pure and Applied Chemistry Applied Chemistry Division Commission on Atmospheric Chemistry* Units for Use in Atmospheric Chemistry , 2022 .

[69]  S S I T C H,et al.  Evaluation of Ecosystem Dynamics, Plant Geography and Terrestrial Carbon Cycling in the Lpj Dynamic Global Vegetation Model , 2022 .

[70]  P. Jones,et al.  Representing Twentieth-Century Space-Time Climate Variability. Part II: Development of 1901-96 Monthly Grids of Terrestrial Surface Climate , 2000 .

[71]  F. Joos,et al.  Global warming and marine carbon cycle feedbacks on future atmospheric CO2 , 1999, Science.

[72]  Thomas F. Stocker,et al.  A Zonally Averaged, Coupled Ocean-Atmosphere Model for Paleoclimate Studies , 1992 .

[73]  Gian-Kasper Plattner,et al.  IPCC Expert Meeting on the Science of Alternative Metrics: Meeting Report , 2009 .

[74]  Mojib Latif,et al.  The Max-Planck-Institute global ocean/sea ice model with orthogonal curvilinear coordinates , 2003 .

[75]  K. Shine Radiative Forcing of Climate Change , 2000 .

[76]  Katrin J. Meissner,et al.  The role of land surface dynamics in glacial inception: a study with the UVic Earth System Model , 2003 .

[77]  J. Canadell,et al.  Soil organic carbon pools in the northern circumpolar permafrost region , 2009 .

[78]  Wallace S. Broecker,et al.  The carbon cycle and atmospheric CO2 , 1986 .

[79]  David S. Lee,et al.  Transport impacts on atmosphere and climate: Metrics , 2010 .

[80]  Carl Ekdahl,et al.  Atmospheric carbon dioxide variations at Mauna Loa Observatory, Hawaii , 1976 .

[81]  Milind Kandlikar,et al.  The relative role of trace gas emissions in greenhouse abatement policies , 1995 .

[82]  Gary Shaffer,et al.  Biogeochemical cycling in the global ocean: 1. A new, analytical model with continuous vertical resolution and high‐latitude dynamics , 1995 .

[83]  Malte Meinshausen,et al.  Uncertainties of global warming metrics: CO2 and CH4 , 2010 .

[84]  J. Fuglestvedt,et al.  Alternatives to the Global Warming Potential for Comparing Climate Impacts of Emissions of Greenhouse Gases , 2005 .

[85]  Jan S. Fuglestvedt,et al.  A simple model for scenario studies of changes in global climate: Version 1.0 , 1999 .

[86]  Dieter Gerten,et al.  A model-based constraint on CO 2 fertilisation , 2012 .

[87]  H. Oeschger,et al.  A box diffusion model to study the carbon dioxide exchange in nature , 1975 .

[88]  F. Joos,et al.  The substitution of high‐resolution terrestrial biosphere models and carbon sequestration in response to changing CO2 and climate , 1999 .

[89]  F. Joos,et al.  How important are Southern Hemisphere wind changes for low glacial carbon dioxide? A model study , 2008 .

[90]  K. Calvin,et al.  The RCP greenhouse gas concentrations and their extensions from 1765 to 2300 , 2011 .

[91]  James D. Annan,et al.  Efficient identification of ocean thermodynamics in a physical/biogeochemical ocean model with an iterative Importance Sampling method , 2010 .

[92]  T. Lenton,et al.  Enhanced carbonate and silicate weathering accelerates recovery from fossil fuel CO2 perturbations , 2006 .

[93]  Christopher B. Field,et al.  The contribution of terrestrial sources and sinks to trends in the seasonal cycle of atmospheric carbon dioxide , 1997 .

[94]  S. Olsen,et al.  Presentation, calibration and validation of the low-order, DCESS Earth System Model (Version 1) , 2008 .

[95]  Alvaro Montenegro,et al.  Lifetime of Anthropogenic Climate Change: Millennial Time Scales of Potential CO2 and Surface Temperature Perturbations , 2009 .

[96]  M. Maqueda,et al.  Sensitivity of a global sea ice model to the treatment of ice thermodynamics and dynamics , 1997 .

[97]  C. Müller,et al.  Virtual water content of temperate cereals and maize: Present and potential future patterns , 2010 .

[98]  I. Enting,et al.  The incompatibility of ice-core CO2 data with reconstructions of biotic CO2 sources (II). , 1987 .

[99]  Corinne Le Quéré,et al.  An efficient and accurate representation of complex oceanic and biospheric models of anthropogenic carbon uptake , 1996 .

[100]  Stephen Sitch,et al.  Global warming feedbacks on terrestrial carbon uptake under the Intergovernmental Panel on Climate Change (IPCC) Emission Scenarios , 2001 .

[101]  Alan S. Manne,et al.  An alternative approach to establishing trade-offs among greenhouse gases , 2001, Nature.

[102]  Katsumasa Tanaka,et al.  Inverse estimation for the simple Earth system model ACC2 and its applications , 2007 .

[103]  Robert Marsh,et al.  Uncertainties due to transport-parameter sensitivity in an efficient 3-D ocean-climate model , 2005 .

[104]  Nathan P. Gillett,et al.  Natural and anthropogenic climate change: incorporating historical land cover change, vegetation dynamics and the global carbon cycle , 2004 .

[105]  L. K. Gohar,et al.  Radiative forcing by well-mixed greenhouse gases: Estimates from climate models in the Intergovernme , 2006 .

[106]  Nicholas R. Bates,et al.  Detecting regional anthropogenic trends in ocean acidification against natural variability , 2012 .

[107]  Benoît Tartinville,et al.  Description of the Earth system model of intermediate complexity LOVECLIM version 1.2 , 2010 .

[108]  David Archer,et al.  A data-driven model of the global calcite lysocline , 1996 .

[109]  Marika M. Holland,et al.  The UVic earth system climate model: Model description, climatology, and applications to past, present and future climates , 2001, Data, Models and Analysis.

[110]  I. Prentice,et al.  Integrating peatlands and permafrost into a dynamic global vegetation model: 2. Evaluation and sensitivity of vegetation and carbon cycle processes , 2009 .

[111]  Katsumasa Tanaka,et al.  Emission Standards : The Case for Gasoline and Diesel Cars , 2012 .

[112]  Julia C. Hargreaves,et al.  Long-term climate commitments projected with climate-carbon cycle models , 2008 .

[113]  I. Prentice,et al.  A general model for the light-use efficiency of primary production , 1996 .

[114]  F. Joos,et al.  Water mass distribution and ventilation time scales in a cost-efficient, three-dimensional ocean model , 2006 .

[115]  F. Joos,et al.  A modeling assessment of the interplay between aeolian iron fluxes and iron-binding ligands in controlling carbon dioxide fluctuations during Antarctic warm events , 2008 .

[116]  Andrei P. Sokolov,et al.  Historical and idealized climate model experiments : An EMIC intercomparison , 2012 .

[117]  Julia C. Hargreaves,et al.  Regulation of atmospheric CO2 by deep‐sea sediments in an Earth system model , 2007 .

[118]  E. Galbraith,et al.  Glacial greenhouse-gas fluctuations controlled by ocean circulation changes , 2008, Nature.

[119]  E. Maier‐Reimer,et al.  Geochemical cycles in an Ocean General Circulation Model , 1993 .

[120]  S. Solomon The Physical Science Basis : Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change , 2007 .

[121]  Glen P. Peters,et al.  The integrated global temperature change potential (iGTP) and relationships between emission metrics , 2011 .

[122]  J. Sarmiento,et al.  A perturbation simulation of CO2 uptake in an ocean general circulation model , 1992 .

[123]  T. Fichefet,et al.  Sensitivity of a global coupled ocean-sea ice model to the parameterization of vertical mixing , 1999 .

[124]  V. Brovkin,et al.  Lowering of glacial atmospheric CO2 in response to changes in oceanic circulation and marine biogeochemistry , 2007 .

[125]  Christoph Heinze,et al.  Reconciling surface ocean productivity, export fluxes and sediment composition in a global biogeochemical ocean model , 2006 .

[126]  Simon J. Cox,et al.  First description of the Minnesota Earth System Model for Ocean biogeochemistry (MESMO 1.0) , 2008 .

[127]  Syukuro Manabe,et al.  Simulated response of the ocean carbon cycle to anthropogenic climate warming , 1998, Nature.

[128]  Kaoru Tachiiri,et al.  Stability of the Atlantic meridional overturning circulation: A model intercomparison , 2012 .

[129]  Robert Sausen,et al.  Metrics of Climate Change: Assessing Radiative Forcing and Emission Indices , 2003 .

[130]  Robert Marsh,et al.  Incorporation of the C-GOLDSTEIN efficient climate model into the GENIE framework: "eb_go_gs" configurations of GENIE , 2009 .

[131]  G. Peters,et al.  Policy Update: Multicomponent climate policy: why do emission metrics matter? , 2010 .

[132]  W. Landman Climate change 2007: the physical science basis , 2010 .

[133]  H. Damon Matthews,et al.  Accounting for carbon cycle feedbacks in a comparison of the global warming effects of greenhouse gases , 2010 .

[134]  J. M. Reilly,et al.  Temperature increase of 21st century mitigation scenarios , 2008, Proceedings of the National Academy of Sciences.

[135]  G. Peters,et al.  The impact of model variation in CO2 and temperature impulse response functions on emission metrics , 2012 .

[136]  Wallace S. Broecker,et al.  Modeling the Carbon System , 1980, Radiocarbon.

[137]  Brian C. O'Neill,et al.  A unifying framework for metrics for aggregating the climate effect of different emissions , 2012 .

[138]  I. G. Enting,et al.  On the use of smoothing splines to filter CO2 data , 1987 .

[139]  T. Bruckner,et al.  Aggregated Carbon cycle, atmospheric chemistry and climate model (ACC2): description of forward and inverse mode , 2007 .

[140]  C. Müller,et al.  Modelling the role of agriculture for the 20th century global terrestrial carbon balance , 2007 .

[141]  I. Enting LETTER TO THE EDITOR: Ambiguities in the calibration of carbon cycle models , 1990 .

[142]  Abraham Lerman,et al.  BIOGEOCHEMICAL RESPONSES OF THE CARBON CYCLE TO NATURAL AND HUMAN PERTURBATIONS: PAST, PRESENT, AND FUTURE , 1999 .

[143]  Fortunat Joos,et al.  Use of a simple model for studying oceanic tracer distributions and the global carbon cycle , 1992 .

[144]  F. Mackenzie,et al.  Coupled C, N, P, and O Biogeochemical Cycling at the Land-Ocean Interface , 2011 .

[145]  C. Jones,et al.  The HadGEM2 family of Met Office Unified Model climate configurations , 2011 .

[146]  K. Lindsay,et al.  Evolution of carbon sinks in a changing climate. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[147]  M. Gehlen,et al.  Ocean acidification: knowns, unknowns, and perspectives , 2011 .

[148]  M. Claussen,et al.  EMIC Intercomparison Project (EMIP–CO2): comparative analysis of EMIC simulations of climate, and of equilibrium and transient responses to atmospheric CO2 doubling , 2005 .

[149]  A. Timmermann,et al.  Climate and marine carbon cycle response to changes in the strength of the southern hemispheric westerlies , 2008 .

[150]  V. Brovkin,et al.  Atmospheric lifetime of fossil-fuel carbon dioxide , 2009 .

[151]  F. Joos,et al.  Regional Impacts of Climate Change and Atmospheric CO2on Future Ocean Carbon Uptake: A Multimodel Linear Feedback Analysis , 2011 .

[152]  K. Hasselmann,et al.  Transport and storage of CO2 in the ocean ——an inorganic ocean-circulation carbon cycle model , 1987 .

[153]  C. Azar,et al.  On the relationship between metrics to compare greenhouse gases – the case of IGTP, GWP and SGTP , 2012 .

[154]  P. Ciais,et al.  Carbon Cycle Uncertainty in REgional Carbon Cycle Assessment and Processes (RECCAP) , 2012 .

[155]  Olivier Boucher,et al.  Comparison of physically- and economically-based CO 2 -equivalences for methane , 2012 .

[156]  J. Berry,et al.  A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species , 1980, Planta.

[157]  F. Joos,et al.  Impact of climate change mitigation on ocean acidification projections , 2011 .