Low-Rate Repeat-Zigzag-Hadamard Codes

In this paper, we propose a new class of low-rate error correction codes called repeat-zigzag-Hadamard (RZH) codes featuring simple encoder and decoder structures, and flexible coding rate. RZH codes are serially concatenated turbo-like codes where the outer code is a repetition code and the inner code is a punctured zigzag-Hadamard (ZH) code. By analyzing the code structure of RZH codes, we prove that both systematic and nonsystematic RZH codes are good codes, in the sense that for an RZH code ensemble, there exists a positive number gamma0 such that for any binary-input memoryless channel whose Bhattacharyya noise parameter is less than , the average block error probability of maximum-likelihood (ML) decoding approaches zero. Two decoding algorithms-serial and parallel decoders for RZH codes-are proposed. We then employ the extrinsic information transfer (EXIT) chart technique to design irregular RZH codes. Results show that the optimized irregular RZH codes exhibit a performance that is very close to capacity in the low-rate regime.

[1]  F. MacWilliams,et al.  The Theory of Error-Correcting Codes , 1977 .

[2]  Amir K. Khandani,et al.  Symbol-based turbo codes , 1999, IEEE Communications Letters.

[3]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[4]  N. Phamdo,et al.  Zigzag codes and concatenated zigzag codes , 1999, 1999 Information Theory and Networking Workshop (Cat. No.99EX371).

[5]  Robert Michael Tanner,et al.  A recursive approach to low complexity codes , 1981, IEEE Trans. Inf. Theory.

[6]  Robert J. McEliece,et al.  RA Codes Achieve AWGN Channel Capacity , 1999, AAECC.

[7]  R. Urbanke,et al.  On the minimum distance of parallel and serially concatenated codes , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).

[8]  R. Yarlagadda,et al.  Hadamard matrix analysis and synthesis: with applications to communications and signal/image processing , 1996 .

[9]  H. Jin,et al.  Irregular repeat accumulate codes , 2000 .

[10]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[11]  Sergio Benedetto,et al.  Unveiling turbo codes: some results on parallel concatenated coding schemes , 1996, IEEE Trans. Inf. Theory.

[12]  A. Glavieux,et al.  Near Shannon limit error-correcting coding and decoding: Turbo-codes. 1 , 1993, Proceedings of ICC '93 - IEEE International Conference on Communications.

[13]  Li Ping,et al.  Concatenated zigzag hadamard codes , 2006, IEEE Transactions on Information Theory.

[14]  Dariush Divsalar,et al.  Upper bounds to error probabilities of coded systems beyond the cutoff rate , 2003, IEEE Trans. Commun..

[15]  Stephan ten Brink,et al.  Extrinsic information transfer functions: model and erasure channel properties , 2004, IEEE Transactions on Information Theory.

[16]  Hui Jin,et al.  Irregular Repeat – Accumulate Codes 1 , 2000 .

[17]  A. Viterbi Orthogonal Tree Codes for Communication in the Presence of White Gaussian Noise , 1967, IEEE Transactions on Communication Technology.

[18]  Robert J. McEliece,et al.  Coding theorems for turbo code ensembles , 2002, IEEE Trans. Inf. Theory.

[19]  Kari Pehkonen,et al.  Performance Evaluation of Superorthogonal Turbo Codes in AWGN and Flat Rayleigh Fading Channels , 1998, IEEE J. Sel. Areas Commun..

[20]  Stephan ten Brink,et al.  Extrinsic information transfer functions: A model and two properties , 2002 .

[21]  Stephan ten Brink,et al.  Design of low-density parity-check codes for modulation and detection , 2004, IEEE Transactions on Communications.

[22]  Stephan ten Brink,et al.  Design of repeat-accumulate codes for iterative detection and decoding , 2003, IEEE Trans. Signal Process..

[23]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .