Scheduling continuous casting of aluminum using a multiple objective ant colony optimization metaheuristic

Abstract This paper presents an ant colony optimization metaheuristic for the solution of an industrial scheduling problem in an aluminum casting center. We present an efficient representation of a continuous horizontal casting process which takes account of a number of objectives that are important to the scheduler. We have incorporated the methods proposed in software that has been implemented in the plant.

[1]  Marco Dorigo,et al.  The ant colony optimization meta-heuristic , 1999 .

[2]  S. H. Huang,et al.  Artificial neural networks in manufacturing: concepts, applications, and perspectives , 1994 .

[3]  Mike Wright,et al.  A comparison of neighborhood search techniques for multi-objective combinatorial problems , 1996, Comput. Oper. Res..

[4]  Marc Gravel,et al.  Scheduling jobs in an Alcan aluminium foundry using a genetic algorithm , 2000 .

[5]  M. Sacramento Quintanilla,et al.  A tabu search approach to machine scheduling , 1998, Eur. J. Oper. Res..

[6]  J. K. Lenstra,et al.  Computational complexity of discrete optimization problems , 1977 .

[7]  M. Dorigo,et al.  1 Positive Feedback as a Search Strategy , 1991 .

[8]  William L. Maxwell,et al.  Theory of scheduling , 1967 .

[9]  Maria Pia Fanti,et al.  Genetic multi-criteria approach to flexible line scheduling , 1998, Int. J. Approx. Reason..

[10]  Yuehwern Yih,et al.  Integration of inductive learning and neural networks for multi-objective FMS scheduling , 1998 .

[11]  Valerie Belton,et al.  Exploring a Multicriteria Approach to Production Scheduling , 1996 .

[12]  Marco Dorigo,et al.  Ant system: optimization by a colony of cooperating agents , 1996, IEEE Trans. Syst. Man Cybern. Part B.

[13]  Riccardo Poli,et al.  New ideas in optimization , 1999 .

[14]  Jiyin Liu,et al.  Addressing the gap in scheduling research: a review of optimization and heuristic methods in production scheduling , 1993 .

[15]  I. H. Öğüş,et al.  NATO ASI Series , 1997 .

[16]  Marco Dorigo,et al.  Optimization, Learning and Natural Algorithms , 1992 .

[17]  Marco Dorigo,et al.  Distributed Optimization by Ant Colonies , 1992 .

[18]  R. Barton,et al.  Simulated annealing heuristics for the average flow-time and the number of tardy jobs bi-criteria identical parallel machine problem , 1997 .

[19]  H. Ishibuchi,et al.  Multi-objective genetic algorithm and its applications to flowshop scheduling , 1996 .

[20]  Ihsan Sabuncuoglu,et al.  A neural network model for scheduling problems , 1996 .

[21]  M Dorigo,et al.  Ant colonies for the travelling salesman problem. , 1997, Bio Systems.

[22]  Paolo Gaiardelli,et al.  Hybrid genetic algorithmsfor a multiple-objective scheduling problem , 1998, J. Intell. Manuf..

[23]  Jean-Yves Potvin,et al.  Genetic Algorithms for the Traveling Salesman Problem , 2005 .

[24]  A. Nagar,et al.  Multiple and bicriteria scheduling : A literature survey , 1995 .

[25]  J. Deneubourg,et al.  How Trail Laying and Trail Following Can Solve Foraging Problems for Ant Colonies , 1990 .

[26]  A. J. Clewett,et al.  Introduction to sequencing and scheduling , 1974 .

[27]  Lawrence Davis,et al.  Applying Adaptive Algorithms to Epistatic Domains , 1985, IJCAI.

[28]  Mario Calderini,et al.  A hierarchical bicriterion approach to integrated process plan selection and job shop scheduling , 1995 .

[29]  C. Reeves Modern heuristic techniques for combinatorial problems , 1993 .

[30]  Hisao Ishibuchi,et al.  A multi-objective genetic local search algorithm and its application to flowshop scheduling , 1998, IEEE Trans. Syst. Man Cybern. Part C.

[31]  F. Glover,et al.  In Modern Heuristic Techniques for Combinatorial Problems , 1993 .

[32]  Marco Dorigo,et al.  Ant system for Job-shop Scheduling , 1994 .

[33]  Jacek Blazewicz,et al.  The job shop scheduling problem: Conventional and new solution techniques , 1996 .

[34]  António Dourado,et al.  Global optimization of energy and production in process industries: a genetic algorithm application , 1997 .

[35]  J. Deneubourg,et al.  Probabilistic behaviour in ants: A strategy of errors? , 1983 .

[36]  Paul A. Rubin,et al.  Scheduling in a sequence dependent setup environment with genetic search , 1995, Comput. Oper. Res..

[37]  G. K. Leong,et al.  A sequencing heuristic for dependent setups in a batch process industry , 1990 .

[38]  Michael Pinedo,et al.  Scheduling jobs on parallel machines with sequence-dependent setup times , 1997, Eur. J. Oper. Res..

[39]  John J. Grefenstette,et al.  Genetic Algorithms for the Traveling Salesman Problem , 1985, ICGA.

[40]  H. R. Lourenço,et al.  Some thoughts on combinatorial optimisation , 1995 .

[41]  F. Aida,et al.  An Ant Approach to the Flow Shop Problem an Ant Approach to the Flow Shop Problem , 1997 .

[42]  Joseph Y.-T. Leung,et al.  Minimizing Total Tardiness on One Machine is NP-Hard , 1990, Math. Oper. Res..

[43]  Yuehwern Yih,et al.  A competitive neural network approach to multi-objective FMS scheduling , 1998 .

[44]  Matthijs den Besten,et al.  Ant Colony Optimization for the Total Weighted Tardiness Problem , 2000, PPSN.

[45]  Corso Elvezia,et al.  Ant colonies for the traveling salesman problem , 1997 .

[46]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[47]  Michel Gendreau,et al.  A tabu search heuristic for the multiprocessor scheduling problem with sequence dependent setup times , 1996 .

[48]  W. J. Selen,et al.  Operational production planning in a chemical manufacturing environment , 1990 .

[49]  Paolo Brandimarte Exploiting process plan flexibility in production scheduling: A multi-objective approach , 1999, Eur. J. Oper. Res..

[50]  J. Deneubourg,et al.  Collective patterns and decision-making , 1989 .