UvA-DARE (Digital Academic Repository) Amsterdam Oxford Joint Rescue Forces: Team description paper: Virtual Robot competition: Rescue Simulation League: RoboCup 2008 Amsterdam Oxford Joint Rescue Forces Team Description Paper Virtual Robot competition Rescue Simulation League RoboCup 2008

With the progress made in active exploration, the robots of the Joint Rescue Forces are capable of making deliberative decisions about the frontiers to be explored. The robots select the frontiers having maximum information gain, taking into account potential communication limitations. The robots incorporate the positions of their team mates into their decisions, to optimize the gain for the team as a whole. Active exploration is based on a shared occupancy map, which is generated online. The images of the omnidirectional camera can be used to automatically detect victims and to add additional information to the map.

[1]  Nils J. Nilsson,et al.  A Formal Basis for the Heuristic Determination of Minimum Cost Paths , 1968, IEEE Trans. Syst. Sci. Cybern..

[2]  Evangelos E. Milios,et al.  Robot Pose Estimation in Unknown Environments by Matching 2D Range Scans , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[3]  Marc Levoy,et al.  Efficient variants of the ICP algorithm , 2001, Proceedings Third International Conference on 3-D Digital Imaging and Modeling.

[4]  Paul A. Viola,et al.  Rapid object detection using a boosted cascade of simple features , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[5]  Stergios I. Roumeliotis,et al.  Weighted range sensor matching algorithms for mobile robot displacement estimation , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[6]  Stergios I. Roumeliotis,et al.  Weighted line fitting algorithms for mobile robot map building and efficient data representation , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[7]  Andrew Howard,et al.  Multi-robot mapping using manifold representations , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[8]  Andreas Birk,et al.  Merging Occupancy Grid Maps From Multiple Robots , 2006, Proceedings of the IEEE.

[9]  Valdir Grassi Junior,et al.  Development of an omnidirectional vision system , 2006 .

[10]  Arnoud Visser,et al.  UvA Rescue Team 2006 RoboCup Rescue - Simulation League , 2006 .

[11]  Stefano Carpin,et al.  The evolution of performance metrics in the RoboCup Rescue Virtual Robot Competition , 2007, PerMIS.

[12]  Max Pfingsthorn,et al.  UvA-DARE ( Digital Academic Repository ) A scalable hybrid multi-robot SLAM method for highly detailed maps , 2007 .

[13]  Arnoud Visser,et al.  Design decisions of the UvA Rescue 2007 Team on the Challenges of the Virtual Robot competition , 2007 .

[14]  L. Preucil,et al.  Balancing the information gain against the movement cost for multi-robot frontier exploration , 2007 .

[15]  Arnoud Visser,et al.  Towards heterogeneous robot teams for disaster mitigation: Results and performance metrics from RoboCup rescue , 2007, J. Field Robotics.

[16]  Arnoud Visser,et al.  Beyond Frontier Exploration , 2008, RoboCup.

[17]  Aksel Ethembabaoglu,et al.  Active target tracking using a mobile robot in the USARSim , 2007 .

[18]  A. Weitzenfeld,et al.  An Omnidirectional Camera Simulation for the USARSim World , 2008 .

[19]  Stephen Cameron,et al.  Robotic search-and-rescue: An integrated approach , 2008 .

[20]  Wolfram Burgard,et al.  Visual SLAM for Flying Vehicles , 2008, IEEE Transactions on Robotics.

[21]  Arnoud Visser,et al.  Including communication success in the estimation of information gain for multi-robot exploration , 2008, 2008 6th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks and Workshops.

[22]  Arnoud Visser,et al.  Robust weighted scan matching with quadtrees , 2009 .

[23]  Stefano Carpin,et al.  Evaluation of RoboCup maps , 2009, PerMIS.

[24]  Luis Merino,et al.  Unmanned Aerial Vehicle Localization Based on Monocular Vision and Online Mosaicking , 2009, J. Intell. Robotic Syst..

[25]  Stephen Cameron,et al.  Role-Based Autonomous Multi-robot Exploration , 2009, 2009 Computation World: Future Computing, Service Computation, Cognitive, Adaptive, Content, Patterns.

[26]  Arnoud Visser,et al.  Evaluating maps produced by urban search and rescue robots: lessons learned from RoboCup , 2009, Auton. Robots.

[27]  Stephen Cameron,et al.  Integrating Automated Object Detection into Mapping in USARSim , 2009 .

[28]  Quang Nguyen,et al.  A color based rangefinder for an omnidirectional camera , 2009 .

[29]  Arnoud Visser,et al.  Evaluating the RoboCup 2009 Virtual Robot Rescue Competition , 2009, PerMIS.

[30]  Arnoud Visser,et al.  Identifying Free Space in a Robot Bird-Eye View , 2009, ECMR.

[31]  T. Naruse,et al.  Coordinated Action in a Heterogeneous Rescue Team , 2009 .

[32]  Stephen Cameron,et al.  Selection of Rendezvous Points for Multi−Robot Exploration in Dynamic Environments , 2010 .

[33]  Arnoud Visser,et al.  Application of traversability maps in the Virtual Rescue competition , 2010 .

[34]  Arnoud Visser,et al.  Realistic Simulation of Laser Range Finder Behavior in a Smoky Environment , 2010, RoboCup.

[35]  Stephen Cameron,et al.  Autonomous Multi-Robot Exploration in Communication-Limited Environments , 2010 .

[36]  Frans A. Oliehoek,et al.  A Decision-Theoretic Approach to Collaboration: Principal Description Methods and Efficient Heuristic Approximations , 2010, Interactive Collaborative Information Systems.

[37]  De Hoog,et al.  UvA-DARE ( Digital Academic Repository ) Dynamic team hierarchies in communication-limited multi-robot exploration , 2010 .

[38]  Universiteit Van Amsterdam,et al.  Virtual radar sensor for USARSim , 2010 .