Statistical solutions of hyperbolic systems of conservation laws: numerical approximation

Statistical solutions are time-parameterized probability measures on spaces of integrable functions, that have been proposed recently as a framework for global solutions and uncertainty quantification for multi-dimensional hyperbolic system of conservation laws. By combining high-resolution finite volume methods with a Monte Carlo sampling procedure, we present a numerical algorithm to approximate statistical solutions. Under verifiable assumptions on the finite volume method, we prove that the approximations, generated by the proposed algorithm, converge in an appropriate topology to a statistical solution. Numerical experiments illustrating the convergence theory and revealing interesting properties of statistical solutions, are also presented.

[1]  Jonas Sukys,et al.  Multi-level Monte Carlo finite volume methods for nonlinear systems of conservation laws in multi-dimensions , 2012, J. Comput. Phys..

[2]  N. Risebro,et al.  A multilevel Monte Carlo finite difference method for random scalar degenerate convection–diffusion equations , 2017 .

[3]  L. Ambrosio,et al.  Gradient Flows: In Metric Spaces and in the Space of Probability Measures , 2005 .

[4]  A. Bressan,et al.  Vanishing Viscosity Solutions of Nonlinear Hyperbolic Systems , 2001, math/0111321.

[5]  Eric Jones,et al.  SciPy: Open Source Scientific Tools for Python , 2001 .

[6]  Siddhartha Mishra,et al.  Sparse tensor multi-level Monte Carlo finite volume methods for hyperbolic conservation laws with random initial data , 2012, Math. Comput..

[7]  J. Hesthaven Numerical Methods for Conservation Laws: From Analysis to Algorithms , 2017 .

[8]  Ondrej Kreml,et al.  Global Ill‐Posedness of the Isentropic System of Gas Dynamics , 2013, 1304.0123.

[9]  Eitan Tadmor,et al.  Arbitrarily High-order Accurate Entropy Stable Essentially Nonoscillatory Schemes for Systems of Conservation Laws , 2012, SIAM J. Numer. Anal..

[10]  P. Lax Hyperbolic systems of conservation laws , 2006 .

[11]  J. Glimm Solutions in the large for nonlinear hyperbolic systems of equations , 1965 .

[12]  Camillo De Lellis,et al.  The Euler equations as a differential inclusion , 2007 .

[13]  Deep Ray,et al.  Deep learning observables in computational fluid dynamics , 2019, J. Comput. Phys..

[14]  L. Young Lectures on the Calculus of Variations and Optimal Control Theory , 1980 .

[15]  R. Voss Random Fractal Forgeries , 1985 .

[16]  Steven Schochet,et al.  Examples of measure-valued solutions , 1989 .

[17]  Jon A. Wellner,et al.  Weak Convergence and Empirical Processes: With Applications to Statistics , 1996 .

[18]  Chi-Wang Shu,et al.  Strong Stability-Preserving High-Order Time Discretization Methods , 2001, SIAM Rev..

[19]  R. LeVeque Numerical methods for conservation laws , 1990 .

[20]  Siddhartha Mishra,et al.  Statistical Solutions of Hyperbolic Conservation Laws: Foundations , 2016, Archive for Rational Mechanics and Analysis.

[21]  P. Levy Processus stochastiques et mouvement brownien , 1948 .

[22]  L. Young,et al.  Lectures on the Calculus of Variations and Optimal Control Theory. , 1971 .

[23]  H. Holden,et al.  Front Tracking for Hyperbolic Conservation Laws , 2002 .

[24]  Kim C. Border,et al.  Infinite dimensional analysis , 1994 .

[25]  Eitan Tadmor,et al.  Construction of Approximate Entropy Measure-Valued Solutions for Hyperbolic Systems of Conservation Laws , 2014, Found. Comput. Math..

[26]  A. Bressan Hyperbolic Systems of Conservation Laws , 1999 .

[27]  Meinhard E. Mayer,et al.  Navier-Stokes Equations and Turbulence , 2008 .

[28]  Donald S. Fussell,et al.  Computer rendering of stochastic models , 1998 .

[29]  R. J. Diperna,et al.  Measure-valued solutions to conservation laws , 1985 .

[30]  A. Tzavaras,et al.  Weak–Strong Uniqueness of Dissipative Measure-Valued Solutions for Polyconvex Elastodynamics , 2011, 1109.6686.

[31]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[32]  Yann Brenier,et al.  Weak-Strong Uniqueness for Measure-Valued Solutions , 2009, 0912.1028.

[33]  H. Kuhn The Hungarian method for the assignment problem , 1955 .

[34]  Achim Klenke,et al.  Probability theory - a comprehensive course , 2008, Universitext.

[35]  Emil Wiedemann,et al.  Weak-Strong Uniqueness in Fluid Dynamics , 2017, Partial Differential Equations in Fluid Mechanics.

[36]  Roger Temam,et al.  Navier-Stokes Equations and Turbulence by C. Foias , 2001 .

[37]  S. Kružkov FIRST ORDER QUASILINEAR EQUATIONS IN SEVERAL INDEPENDENT VARIABLES , 1970 .

[38]  Abubakr Gafar Abdalla,et al.  Probability Theory , 2017, Encyclopedia of GIS.

[39]  Kellen Petersen August Real Analysis , 2009 .

[40]  C. Villani Topics in Optimal Transportation , 2003 .

[41]  R. Bass,et al.  Review: P. Billingsley, Convergence of probability measures , 1971 .

[42]  Rachid Ait-Haddou Polynomial degree reduction in the discrete $$L_2$$L2-norm equals best Euclidean approximation of h-Bézier coefficients , 2016 .

[43]  Eitan Tadmor,et al.  On the computation of measure-valued solutions , 2016, Acta Numerica.

[44]  A. Bressan Hyperbolic systems of conservation laws : the one-dimensional Cauchy problem , 2000 .

[45]  C. M. Dafermos,et al.  Hyberbolic [i.e. Hyperbolic] conservation laws in continuum physics , 2005 .

[46]  Eduard Feireisl,et al.  Measure-valued solutions to the complete Euler system , 2018, Journal of the Mathematical Society of Japan.

[47]  B. Mandelbrot,et al.  Fractional Brownian Motions, Fractional Noises and Applications , 1968 .

[48]  Ulrik Skre Fjordholm,et al.  High-order accurate entropy stable numercial schemes for hyperbolic conservation laws , 2013 .

[49]  K. Lye,et al.  NUMERICAL APPROXIMATION OF STATISTICAL SOLUTIONS OF SCALAR CONSERVATION LAWS , 2018 .

[50]  P. Gänssler Weak Convergence and Empirical Processes - A. W. van der Vaart; J. A. Wellner. , 1997 .

[51]  J. Ball A version of the fundamental theorem for young measures , 1989 .

[52]  Michel Loève,et al.  Probability Theory I , 1977 .