Simultaneous Bottom‐Up Interfacial and Bulk Defect Passivation in Highly Efficient Planar Perovskite Solar Cells using Nonconjugated Small‐Molecule Electrolytes

Recent perovskite solar cell (PSC) advances have pursued strategies for reducing interfacial energetic mismatches to mitigate energy losses, as well as to minimize interfacial and bulk defects and ion vacancies to maximize charge transfer. Here nonconjugated multi‐zwitterionic small‐molecule electrolytes (NSEs) are introduced, which act not only as charge‐extracting layers for barrier‐free charge collection at planar triple cation PSC cathodes but also passivate charged defects at the perovskite bulk/interface via a spontaneous bottom‐up passivation effect. Implementing these synergistic properties affords NSE‐based planar PSCs that deliver a remarkable power conversion efficiency of 21.18% with a maximum VOC = 1.19 V, in combination with suppressed hysteresis and enhanced environmental, thermal, and light‐soaking stability. Thus, this work demonstrates that the bottom‐up, simultaneous interfacial and bulk trap passivation using NSE modifiers is a promising strategy to overcome outstanding issues impeding further PSC advances.

[1]  C. H. Ng,et al.  Xanthate-induced sulfur doped all-inorganic perovskite with superior phase stability and enhanced performance , 2019, Nano Energy.

[2]  M. Wasielewski,et al.  Combustion Synthesized Zinc Oxide Electron‐Transport Layers for Efficient and Stable Perovskite Solar Cells , 2019, Advanced Functional Materials.

[3]  N. Park,et al.  On the Current–Voltage Hysteresis in Perovskite Solar Cells: Dependence on Perovskite Composition and Methods to Remove Hysteresis , 2019, Advanced materials.

[4]  A. Ng,et al.  Novel Molecular Doping Mechanism for n‐Doping of SnO2 via Triphenylphosphine Oxide and Its Effect on Perovskite Solar Cells , 2019, Advanced materials.

[5]  Zhenghong Lu,et al.  Zwitterions for Organic/Perovskite Solar Cells, Light‐Emitting Devices, and Lithium Ion Batteries: Recent Progress and Perspectives , 2019, Advanced Energy Materials.

[6]  M. Can,et al.  Semiconductor self-assembled monolayers as selective contacts for efficient PiN perovskite solar cells , 2019, Energy & Environmental Science.

[7]  Sungjin Park,et al.  Thermally Stable, Planar Hybrid Perovskite Solar Cells with High Efficiency , 2018, Proceedings of the 4th Asia-Pacific International Conference on Perovskite, Organic Photovoltaics and Optoelectronics.

[8]  Jinsong Huang,et al.  Dual Functions of Crystallization Control and Defect Passivation Enabled by Sulfonic Zwitterions for Stable and Efficient Perovskite Solar Cells , 2018, Advanced materials.

[9]  Michael Grätzel,et al.  Multifunctional molecular modulators for perovskite solar cells with over 20% efficiency and high operational stability , 2018, Nature Communications.

[10]  G. Fang,et al.  Review on the Application of SnO2 in Perovskite Solar Cells , 2018, Advanced Functional Materials.

[11]  Kwanghee Lee,et al.  Introducing paired electric dipole layers for efficient and reproducible perovskite solar cells , 2018 .

[12]  Tae-Youl Yang,et al.  A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells , 2018, Nature Energy.

[13]  Y. Hao,et al.  High‐Performance Planar Perovskite Solar Cells Using Low Temperature, Solution–Combustion‐Based Nickel Oxide Hole Transporting Layer with Efficiency Exceeding 20% , 2018 .

[14]  Jingjing Zhao,et al.  Surfactant-controlled ink drying enables high-speed deposition of perovskite films for efficient photovoltaic modules , 2018 .

[15]  Xingwang Zhang,et al.  SnO2 : A Wonderful Electron Transport Layer for Perovskite Solar Cells. , 2018, Small.

[16]  Junyou Yang,et al.  Low-Temperature Solution-Processed ZnSe Electron Transport Layer for Efficient Planar Perovskite Solar Cells with Negligible Hysteresis and Improved Photostability. , 2018, ACS nano.

[17]  Ling Hong,et al.  Highly efficient non-fullerene polymer solar cells enabled by novel non-conjugated small-molecule cathode interlayers , 2018 .

[18]  R. Munir,et al.  Stable High‐Performance Perovskite Solar Cells via Grain Boundary Passivation , 2018, Advanced materials.

[19]  Tae‐Woo Lee,et al.  Energy level alignment of dipolar interface layer in organic and hybrid perovskite solar cells , 2018 .

[20]  Junjie Ma,et al.  Fully High‐Temperature‐Processed SnO2 as Blocking Layer and Scaffold for Efficient, Stable, and Hysteresis‐Free Mesoporous Perovskite Solar Cells , 2018 .

[21]  M. M. Byranvand,et al.  p‐Type CuI Islands on TiO2 Electron Transport Layer for a Highly Efficient Planar‐Perovskite Solar Cell with Negligible Hysteresis , 2018 .

[22]  Sung Cheol Yoon,et al.  High‐Efficiency Low‐Temperature ZnO Based Perovskite Solar Cells Based on Highly Polar, Nonwetting Self‐Assembled Molecular Layers , 2018 .

[23]  Jingjing Zhao,et al.  Stabilizing the α-Phase of CsPbI3 Perovskite by Sulfobetaine Zwitterions in One-Step Spin-Coating Films , 2017 .

[24]  Richard H. Friend,et al.  Understanding Energy Loss in Organic Solar Cells: Toward a New Efficiency Regime , 2017 .

[25]  Deren Yang,et al.  Enhanced Electronic Properties of SnO2 via Electron Transfer from Graphene Quantum Dots for Efficient Perovskite Solar Cells. , 2017, ACS nano.

[26]  M. Nazeeruddin,et al.  A Strategy to Produce High Efficiency, High Stability Perovskite Solar Cells Using Functionalized Ionic Liquid‐Dopants , 2017, Advanced materials.

[27]  Long Ji,et al.  Stitching triple cation perovskite by a mixed anti-solvent process for high performance perovskite solar cells , 2017 .

[28]  Li-ping Zhu,et al.  Cathode modification in planar hetero-junction perovskite solar cells through a small-molecule zwitterionic carboxylate , 2017 .

[29]  Bo Chen,et al.  Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations , 2017, Nature Energy.

[30]  Kwanghee Lee,et al.  Achieving Large‐Area Planar Perovskite Solar Cells by Introducing an Interfacial Compatibilizer , 2017, Advanced materials.

[31]  L. Quan,et al.  SOLAR CELLS: Efficient and stable solution‐processed planar perovskite solar cells via contact passivation , 2017 .

[32]  Xingzhong Zhao,et al.  Interface engineering in planar perovskite solar cells: energy level alignment, perovskite morphology control and high performance achievement , 2017 .

[33]  Yang Yang,et al.  Tailoring the Interfacial Chemical Interaction for High-Efficiency Perovskite Solar Cells. , 2017, Nano letters.

[34]  Z. Yin,et al.  Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2PbI3-based perovskite solar cells , 2016, Nature Energy.

[35]  M. Wasielewski,et al.  TiO2-ZnS Cascade Electron Transport Layer for Efficient Formamidinium Tin Iodide Perovskite Solar Cells. , 2016, Journal of the American Chemical Society.

[36]  Ruixia Yang,et al.  Surface optimization to eliminate hysteresis for record efficiency planar perovskite solar cells , 2016 .

[37]  Lei Zhang,et al.  Highly efficient polymer solar cells using a non-conjugated small-molecule zwitterion with enhancement of electron transfer and collection , 2016 .

[38]  J. Hummelen,et al.  Elimination of the light soaking effect and performance enhancement in perovskite solar cells using a fullerene derivative , 2016 .

[39]  Anders Hagfeldt,et al.  Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c5ee03874j Click here for additional data file. , 2016, Energy & environmental science.

[40]  Y. Qi,et al.  Universal energy level tailoring of self-organized hole extraction layers in organic solar cells and organic–inorganic hybrid perovskite solar cells , 2016 .

[41]  A. Facchetti,et al.  Efficient polymer solar cells based on the synergy effect of a novel non-conjugated small-molecule electrolyte and polar solvent , 2016 .

[42]  P. Kamat,et al.  Evolution of Chemical Composition, Morphology, and Photovoltaic Efficiency of CH3NH3PbI3 Perovskite under Ambient Conditions , 2016 .

[43]  Wei Zhang,et al.  Enhanced optoelectronic quality of perovskite thin films with hypophosphorous acid for planar heterojunction solar cells , 2015, Nature Communications.

[44]  Bo Chen,et al.  Impact of Capacitive Effect and Ion Migration on the Hysteretic Behavior of Perovskite Solar Cells. , 2015, The journal of physical chemistry letters.

[45]  Michael Grätzel,et al.  Highly efficient planar perovskite solar cells through band alignment engineering , 2015 .

[46]  Xinhua Ouyang,et al.  Efficient polymer solar cells employing a non-conjugated small-molecule electrolyte , 2015, Nature Photonics.

[47]  Qingfeng Dong,et al.  Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals , 2015, Science.

[48]  Linfeng Liu,et al.  Fully printable mesoscopic perovskite solar cells with organic silane self-assembled monolayer. , 2015, Journal of the American Chemical Society.

[49]  Jiang Liu,et al.  Highly efficient fullerene/perovskite planar heterojunction solar cells via cathode modification with an amino-functionalized polymer interlayer , 2014 .

[50]  Eric T. Hoke,et al.  Hysteresis and transient behavior in current–voltage measurements of hybrid-perovskite absorber solar cells , 2014 .

[51]  C. Brabec,et al.  Improved High-Efficiency Perovskite Planar Heterojunction Solar Cells via Incorporation of a Polyelectrolyte Interlayer , 2014 .

[52]  Sang Il Seok,et al.  Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. , 2014, Nature materials.

[53]  Yang Yang,et al.  Interface engineering of highly efficient perovskite solar cells , 2014, Science.

[54]  T. Ma,et al.  All-Solid Perovskite Solar Cells with HOCO-R-NH3+I– Anchor-Group Inserted between Porous Titania and Perovskite , 2014 .

[55]  M. Gorgoi,et al.  Electronic Structure of TiO2/CH3NH3PbI3 Perovskite Solar Cell Interfaces. , 2014, The journal of physical chemistry letters.

[56]  J. Teuscher,et al.  Unravelling the mechanism of photoinduced charge transfer processes in lead iodide perovskite solar cells , 2014, Nature Photonics.

[57]  Henry J. Snaith,et al.  Efficient planar heterojunction perovskite solar cells by vapour deposition , 2013, Nature.

[58]  Alex K.-Y. Jen,et al.  High-performance perovskite-polymer hybrid solar cells via electronic coupling with fullerene monolayers. , 2013, Nano letters.

[59]  Martin Schreyer,et al.  Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3) PbI3 for solid-state sensitised solar cell applications , 2013 .

[60]  Talha M. Khan,et al.  A Universal Method to Produce Low–Work Function Electrodes for Organic Electronics , 2012, Science.

[61]  H. Snaith,et al.  SnO2-based dye-sensitized hybrid solar cells exhibiting near unity absorbed photon-to-electron conversion efficiency. , 2010, Nano letters.

[62]  Peter J. Hotchkiss,et al.  Modification of the Surface Properties of Indium Tin Oxide with Benzylphosphonic Acids: A Joint Experimental and Theoretical Study , 2009 .

[63]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.