Synchronizing Deterministic Push-Down Automata Can Be Really Hard

The question if a deterministic finite automaton admits a software reset in the form of a so-called synchronizing word can be answered in polynomial time. In this paper, we extend this algorithmic question to deterministic automata beyond finite automata. We prove that the question of synchronizability becomes undecidable even when looking at deterministic one-counter automata. This is also true for another classical mild extension of regularity, namely that of deterministic one-turn push-down automata. However, when we combine both restrictions, we arrive at scenarios with a PSPACE-complete (and hence decidable) synchronizability problem. Likewise, we arrive at a decidable synchronizability problem for (partially) blind deterministic counter automata. There are several interpretations of what synchronizability should mean for deterministic push-down automata. This is depending on the role of the stack: should it be empty on synchronization, should it be always the same or is it arbitrary? For the automata classes studied in this paper, the complexity or decidability status of the synchronizability problem is mostly independent of this technicality, but we also discuss one class of automata where this makes a difference.

[1]  Jean Berstel,et al.  Transductions and context-free languages , 1979, Teubner Studienbücher : Informatik.

[2]  Mahsa Shirmohammadi Qualitative analysis of synchronizing probabilistic systems. (Analyse qualitative des systèmes probabilistes synchronisants) , 2014 .

[3]  Walter J. Savitch,et al.  Relationships Between Nondeterministic and Deterministic Tape Complexities , 1970, J. Comput. Syst. Sci..

[4]  Mikhail V. Volkov,et al.  Synchronizing Automata and the Cerny Conjecture , 2008, LATA.

[5]  Karin Quaas,et al.  Synchronizing Data Words for Register Automata , 2016, MFCS.

[6]  Peter H. Starke A Remark About Homogeneous Experiments , 2019, J. Autom. Lang. Comb..

[7]  Ernst W. Mayr An Algorithm for the General Petri Net Reachability Problem , 1984, SIAM J. Comput..

[8]  I. K. Rystsov,et al.  Polynomial Complete Problems in Automata Theory , 1983, Inf. Process. Lett..

[9]  Balázs Imreh,et al.  Directable Nondeterministic Automata , 1999, Acta Cybern..

[10]  K. Mehlhorn Pebbling Moutain Ranges and its Application of DCFL-Recognition , 1980, ICALP.

[11]  Ken Higuchi,et al.  A Polynomial-Time Algorithm for Checking the Inclusion for Real-Time Deterministic Restricted One-Counter Automata Which Accept by Final State , 1995, IEICE Trans. Inf. Syst..

[12]  Géraud Sénizergues,et al.  The Equivalence and Inclusion Problems for NTS Languages , 1985, J. Comput. Syst. Sci..

[13]  Mahsa Shirmohammadi,et al.  Synchronizing Automata over Nested Words , 2016, FoSSaCS.

[14]  Sheila A. Greibach Remarks on Blind and Partially Blind One-Way Multicounter Machines , 1978, Theor. Comput. Sci..

[15]  Changwook Kim Quasi-rocking real-time pushdown automata , 2011, Theor. Comput. Sci..

[16]  Emily P. Friedman The Inclusion Problem for Simple Languages , 1976, Theor. Comput. Sci..

[17]  Pavel Martyugin Computational Complexity of Certain Problems Related to Carefully Synchronizing Words for Partial Automata and Directing Words for Nondeterministic Automata , 2013, Theory of Computing Systems.

[18]  Yuri V. Matiyasevich,et al.  Decision problems for semi-Thue systems with a few rules , 1996, Proceedings 11th Annual IEEE Symposium on Logic in Computer Science.

[19]  Leslie G. Valiant,et al.  Decision procedures for families of deterministic pushdown automata , 1973 .

[20]  S. Rao Kosaraju,et al.  Decidability of reachability in vector addition systems (Preliminary Version) , 1982, STOC '82.

[21]  Marek Szykula,et al.  Improving the Upper Bound on the Length of the Shortest Reset Word , 2017, STACS.

[22]  Etsuji Tomita,et al.  A Fast Algorithm for Checking the Inclusion for Very Simple Deterministic Pushdown Automata , 1993 .

[23]  Turlough Neary,et al.  Undecidability in Binary Tag Systems and the Post Correspondence Problem for Five Pairs of Words , 2013, STACS.

[24]  Ján Cerný A Note on Homogeneous Experiments with Finite Automata , 2019, J. Autom. Lang. Comb..

[25]  Emil L. Post A variant of a recursively unsolvable problem , 1946 .

[26]  Stanislav Böhm,et al.  Language Equivalence of Deterministic Real-Time One-Counter Automata Is NL-Complete , 2011, MFCS.

[27]  Eitan M. Gurari,et al.  The Complexity of Decision Problems for Finite-Turn Multicounter Machines , 1981, J. Comput. Syst. Sci..

[28]  Henning Fernau,et al.  Synchronization of Deterministic Visibly Push-Down Automata , 2020, FSTTCS.

[29]  Sven Sandberg,et al.  Homing and Synchronizing Sequences , 2004, Model-Based Testing of Reactive Systems.

[30]  Meera Blattner The Unsolvability of the Equality Problem for Sentential Forms of Context-Free Grammars , 1973, J. Comput. Syst. Sci..

[31]  M. Minsky Recursive Unsolvability of Post's Problem of "Tag" and other Topics in Theory of Turing Machines , 1961 .

[32]  Szabolcs Iván Synchronizing weighted automata , 2014, AFL.

[33]  Didier Caucal Synchronization of Pushdown Automata , 2006, Developments in Language Theory.

[34]  Seymour Ginsburg,et al.  The mathematical theory of context free languages , 1966 .

[35]  David Eppstein,et al.  Reset Sequences for Monotonic Automata , 1990, SIAM J. Comput..

[36]  S. Ginsburg,et al.  Finite-Turn Pushdown Automata , 1966 .

[37]  Niraj K. Jha,et al.  Switching and Finite Automata Theory , 2010 .

[38]  Yaroslav Shitov,et al.  An Improvement to a Recent Upper Bound for Synchronizing Words of Finite Automata , 2019, J. Autom. Lang. Comb..

[39]  Luc Boasson,et al.  NTS Languages Are Deterministic and Congruential , 1985, J. Comput. Syst. Sci..

[40]  Peter H. Starke Eine Bemerkung über homogene Experimente , 1966, J. Inf. Process. Cybern..

[41]  Marcelo Arenas,et al.  Regular Languages of Nested Words: Fixed Points, Automata, and Synchronization , 2010, Theory of Computing Systems.

[42]  Timothy V. Griffiths The unsolvability of the Equivalence Problem for Λ-Free nondeterministic generalized machines , 1968, JACM.

[43]  Slawomir Lasota,et al.  The Reachability Problem for Petri Nets Is Not Elementary , 2018, J. ACM.

[44]  Oscar H. Ibarra The Unsolvability of the Equivalence Problem for epsilon-Free NGSM's with Unary Input (Output) Alphabet and Applications , 1978, SIAM J. Comput..

[45]  Rajeev Alur,et al.  Visibly pushdown languages , 2004, STOC '04.

[46]  Kim G. Larsen,et al.  Synchronizing Words for Weighted and Timed Automata , 2014, FSTTCS.